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1. Introduction and Motivation 

 

Human induced climate change has in the recent years become one of the most 

important public policy problem for many national governments. In order to halt 

anthropogenic climate change, cumulative emissions need to be limited with a long-

term climate policy, either directly in form of a cap on cumulative emissions or 

indirectly through a universal emission price. Given an exogenous cumulative constrain 

on anthropogenic emissions, the central challenge for policy makers involves the design 

and implementation of a technology policy to support cost-effective abatement 

strategies. 

However, imperfect information and uncertainty about future economic 

developments is a major challenge for optimal implementation of technology policies. 

What form of technology policy should be implemented, in addition to a carbon cap (or 

a price), to combat global warming in a cost-effective way remains a hotly debated 

topic. A better understanding of the consequences of sub-optimal policy decisions due 

to uncertainty and information problems, for more robust decision making, is crucial for 

policy makers. Following up on this, the present study aims to make a contribution to 

better understand the effect uncertainty and imperfect information have on the 

performance and choice of cost-effective technology policies under an exogenously 

given climate policy.  

Numerous studies have addressed the importance of uncertainty when assessing 

optimal or cost-effective environmental policy. One strand of literature takes only the 

climate externality into account and examines the impact of uncertainty on the 

stringency or timing of the optimal climate policy, or on the costs of an exogenously 

given climate policy. While the overall result of those studies is that implications of 

uncertainty are ambiguous, most find that uncertainty results in stricter and earlier 

abatement as uncertainty about climate damages is usually higher than about climate 

policy costs. Uncertainty about climate sensitivity, climate damages, growth rate of total 

productivity, abatement costs, and the social discount rate are among those uncertainties 
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that have the largest impact. Moreover, the inclusion of uncertain climate thresholds or 

some representation of a climate catastrophe commonly lead to stricter policies. 

Another more related strand of research investigates the implication of 

uncertainty on technology investments (see an overview in Baker and Shittu, 2008). 

These studies typically assume that technological development is uncertain and depends 

on either R&D or learning-by-doing (LBD) mechanism. Baker et al. (2006) explore 

social optimal near term technology R&D in the face of uncertain climate damages 

using both a simple analytical model and a computational model based on DICE. They 

find that climate uncertainty can have significant impact on short-term R&D, while the 

size and the direction of the impact is ambiguous - as it depends on how the technical 

change and the uncertainty are specified. Gritsevskyi and Nakicenovic (2000) and 

Bosetti and Tavoni (2009) study implications of technological uncertainty on optimal 

investments in R&D and LBD, respectively. In contrast to the other studies, Gritsevskyi 

and Nakicenovic (2000) do not use an act-learn-act model but apply a Pseudo Monte 

Carlo method to a modified MESSAGE model where costs of multiple technologies and 

energy sources are uncertain. Closely related technologies are assumed to have high 

knowledge spillover effects whereas less related technologies are assumed to have 

lower spillover effects. From the 520 simulated technology dynamics about 10% 

satisfied an "optimality" criteria (risk and costs minimization) indicating that 

fundamentally different technology dynamics can result in similar overall costs. 

Furthermore, both the uncertainty and the spillovers result in great short- and medium 

term effects on the emerging energy system structure due to system lock-ins and 

increasing returns to adoption, while in the long term the effects are neglectable. Under 

an exogenous climate target, Bosetti and Tavoni (2009) study the effect of uncertain 

effectiveness of backstop technology R&D on innovation investment levels and on 

policy costs, applying both a simple analytical model and a computational model based 

on WHICH. Results show that uncertain R&D, shifting the marginal abatement cost 

curve down if successful, leads to higher optimal R&D investments and lower climate 

policy costs. Both Blanford (2006) and Baker and Adu-Bonnah (2008) study the impact 

of uncertainty in climate damages and in technical change on optimal R&D 

investments. Blanford (2006) focuses on optimal R&D diversification and takes both 
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market interactions and inter-sectoral knowledge spillovers into account. He finds that 

diversification increases with an increase in the budget and with greater probability of 

high climate damages when technologies are market substitutes. Baker and Adu-Bonnah 

(2008) take two effects from R&D into consideration: first, a proportionate reduction in 

abatement costs (pivot down the cost curve) representing R&D in non-carbon energy 

programs, and second, a reduction in emission-to-output ratio representing R&D in 

fossil fuel technologies. They find R&D for non-carbon programs increase in the 

riskiness of the program, except when the probability of a catastrophe is very high. 

Their result deviates a bit from Bosetti and Tavoni (2009), who find R&D in backstop 

technology (pivot down the cost curve) increases independent of the climate target.  

The above listed studies have one thing in common: they are all from the 

perspective of a social planner who makes decisions on behalf of society, implicitly 

assuming that optimal or least-cost policies are in place. However, this assumption 

abstracts from the decentralized nature of real economies and ignores many potential 

inefficiencies stemming from human interactions. Furthermore, for 'second-best' policy 

analysis a different modeling framework is necessary. Hence, an analysis of the effect 

of uncertainty on the choice and performance of various technology policies (both 'first-

best' and 'second-best'), to support cost-effective investments and abatement strategies, 

has  to our knowledge  not been undertaken yet. 

With the use of the Integrated Policy Assessment Model PRIDE (Kalkuhl et al. 

2013) we aim to fill this research gap, by conducting a welfare analysis in a 'second-

best' setting allowing for explicit strategic interactions between decentralized agents. 

The model represents utility and profit-maximizing economic agents (i.e. households, 

production, fossil and renewable energy firms, and fossil resource owners) and a 

government that implements policy instruments. Due to a market failure in the learning 

carbon-free energy market, in form of intra-sectoral knowledge spillovers, a technology 

policy  in addition to a climate policy  is needed to support cost-effective abatement 

strategies. 

With an exogenously given emission constrain, we study and compare the 

performance of three types of technology policies, the renewable energy subsidy, the 

feed-in-tariff, and the renewable energy quota, under economic uncertainty from the 



 LIMITS – LOW CLIMATE IMPACT SCENARIOS AND THE IMPLICATION OF 

REQUIRED TIGHT EMISSION CONTROL STRATEGIES 
PROJECT NO 282846  

 

DELIVERABLE NO. 2.4 

 

 

 5 

 

government's perspective. The effect of two types of economic uncertainty is analyzed: 

a) uncertainty in economic growth, and b) uncertainty in learning rates of learning 

carbon-free technology. The uncertainty is modeled as parametric uncertainty applying 

the method of discrete stochastic programming. With this study we seek to answer two 

main questions: (i) How does economic uncertainty influence the performance of 

various technology policies given an exogenous climate policy?, (ii) Are some 

technology policies more robust to uncertainty than others?, and iii) Does uncertainty 

influence the choice of the technology policy? 

 

2. The model 
 

The PRIDE model (Policy and Regulatory Instruments in a Decentralized 

Economy) is an inter-temporal general equilibrium model that finds least-cost paths to 

reach a given emission target. The economy consists of households, production, fossil 

extraction, and three energy sectors: fossil-, mature carbon free-, and learning carbon-

free energy. Each economic actor takes strategic decisions to maximize profit or utility, 

while the government imposes policy instruments to maximize welfare. Figure 2.1 gives 

an overview of the model structure and the role of the government. 

 

                       

Figure 2.1: Overview of the PRIDE model 

 

Of the three energy types, the mature carbon-free energy refers to nuclear or 

hydropower as their learning rates are very low. Learning carbon-free energy refers to 
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wind, solar, and ethanol for which we assume a 17% learning rate and a 60% intra-

sectoral knowledge spillover rate (only 40% of profit is appropriated). Fossil energy is 

constrained with an exogenously given climate policy consisting of a 450 GtC cap on 

fossil emissions. We assume a good substituability between fossil and carbon-free 

energy with elasticity of substitution . As the carbon-free energy sector 

covers mainly electric energy, we assume a very high substitutability between mature 

carbon-free and learning carbon-free energy and set . Details about the 

model structure and other parameter values can be found in Kalkuhl et al. (2013). 

The government has the choice between three technology policy instruments: 

subsidy, feed-in-tariff, or quota. When the government has perfect information, the 

renewable energy subsidy is the 'first-best' policy instrument, as it can perfectly 

internalize the spillover externality if applied in such a way that the social return on 

investment is equal to the private return on investment at all points in time. The feed-in-

tariff is a learning carbon-free subsidy that is cross-financed through a tax on fossil and 

mature carbon-fee energy, while the renewable energy quota fixes the minimum share 

of energy coming from learning carbon-free technology relative to total energy supply. 

Both, the quota and the feed-in-tariff are 'second-best' policy instruments that result in 

small welfare losses compared to when the subsidy is applied, as they do not target the 

market failure directly. While the subsidy outperforms the other 'second-best' policy 

instruments under perfect foresight, we would like to know if the subsidy still remains 

as the welfare maximizing policy instrument when the government is uncertainty about 

future economic conditions. 

 

2.1  The uncertainty 
Uncertainty can be viewed in three ways: parametric, stochastic, or as Knightian 

uncertainty. In this regard, most studies focus on parametric uncertainty which is the 

uncertainty about model parameters and the general model structure and is typically 

assumed to decline either with time or with abatement effort. Incomplete knowledge 

about the form of the damage function or the corresponding parameter values are 

examples of parametric uncertainty. Moreover, uncertainty due to natural variability in 
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certain processes in form of persistent shocks, such as in temperature variations, is 

referred to as stochasticity. While past realization of stochastic shocks will be realized, 

future developments or shocks will always be uncertain (Kelly and Kolstad 1999). 

Finally, in contrast to parametric uncertainty and stochasticity, which can be 

characterized with well-defined probability distributions for input parameters, Knightian 

uncertainty represents situations in which no or only ambiguous probabilistic 

information is available (Etner et al. 2010). Parametric uncertainty is typically explored 

using three different methods: Uncertainty Propagation, such as Monte Carlo Analysis, 

Discrete Stochastic Programming, or Real Option Analysis. Stochastic Dynamic 

Programming is applied under stochasticity, while models of ambiguity aversion and 

Robust Decision Making are often applied when uncertainty is considered being 

Knightian.  

While the strength of Stochastic Dynamic Programming is a flexible framework 

to include endogenous uncertainty, as opposed to exogenous scenario trees, where the 

resolution of uncertainty depends on time or previous decisions, the drawback is the 

curse of dimensionality: the complexity and the computing time increases exponentially 

with every state variable, decision variable, and exogenous information process. Due to 

the complexity of the PRIDE model, Discrete Stochastic Programming became the 

chosen method to address the uncertainty. 

Discrete Stochastic Programming allows for few possible state-of-the-worlds 

(SOWs), each representing a unique realization of the uncertain parameter, but only one 

decision path. Only after uncertainty has been realized the decision path can be tailored 

to the respective SOWs. In this framework, the optimal policy under uncertainty 

becomes a hedge between optimal policies under certainty for all possible SOWs. The 

advantage of Discrete Stochastic Programming is the ability to analyze two kinds of 

effects on optimal decisions: first, the effect of uncertainty, and, second, the effect of 

future learning. 

To study the robustness of various policy instruments, we take two types of 

parametric uncertainty into account: the uncertainty about future economic growth rate 

and the uncertainty about the learning rate of carbon-free technology. In each case, the 

uncertain parameter can take two values: a high value or a low value. As economic 
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actors are likely to know more about current and future economic developments 

compared to the government, we assume all economic actors have perfect information 

and foresight. Only the government is uncertain about the economic conditions. 

However, the government knows the possible values of the uncertain parameter, the 

probability of occurrence, and anticipates the time of learning. The uncertainty is 

modeled as a constraint on the government's decision variable - the technology policy - 

to be equivalent in both SOWs until learning of the true parameter takes place. 

 

3. Uncertainty in Economic Growth 
 

Perhaps the most relevant type of uncertainty to policy makers is the uncertainty 

about economic growth. This type of uncertainty is modeled with the stochastic 

parameter , inserted in front of the output equation . 

 

  (3.1) 

 

 can take two values  high or low  with equal probability. 

In the following example we assume that  (average growth of 2.4%) in the 

high growth state-of-the-world (SOW),  (averages growth of 2.2%) in the 

low growth SOW, and  (average growth of 2.3%) in the deterministic 

equivalent SOW. The deterministic equivalent SOW is the standard growth scenario. 

Total energy consists of three energy sources: Fossil-, renewable- (learning 

carbon-free), and nuclear (mature carbon-free) energy. In the short term the largest 

share of total energy supply is coming from fossil technologies, while at the end of the 

century mainly and finally only from renewable energy sources. Of the two carbon-free 

energy technologies, nuclear is assumed to be more competitive in the short and 

medium term relative to the learning carbon-free technology. Not until the middle of the 

century, when significant learning-by-doing has occurred, renewable energy becomes 

more competitive than nuclear. However, nuclear serves as an important energy source 

for smoothing the transition between fossil and renewable energy supply. 
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All energy technologies are more productive in the high growth SOW but less 

productive in the low growth SOW compared to the deterministic equivalent scenario. 

As fossil energy is constrained with the environmental policy in form of a cap on 

emissions, the transition between fossil and renewable energy starts earlier in the high 

growth SOW and later in the low growth SOW. Therefore, renewable energy is the 

relatively more important energy source in the high growth SOW than in the low 

growth SOW and needs greater support, particularly in the short term, from the 

government. If the government is uncertain about the true SOW, it has to implement a 

policy that maximizes expected discounted welfare as opposed to discounted welfare. 

 

3.1 Subsidy 
The 'first-best' policy instrument to target the externality from knowledge 

spillovers in the renewable energy market is a renewable energy subsidy. However, if 

the government is uncertain about the future economic growth rate the implemented 

subsidy is likely to be sub-optimal, as the subsidy depends on the economic growth rate. 

In comparison to the deterministic low growth subsidy, the deterministic high growth 

subsidy is stronger in the short term, but lower in the medium- and long-term as 

renewable energy technology becomes faster a competitive energy source. 

 

Figure 3.1: Uncertain economic growth  learning in 2060 
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If the government anticipates to learn in 2060 about the true SOW, it will choose 

a subsidy path that is relatively aggressive in the short term but then levels off between 

the deterministic high and low subsidy paths. As investors have perfect foresight and 

information about economic conditions and also about the government's policy path, 

they will adapt their investment plans to maximize profits. In the high growth SOW the 

subsidy under uncertainty will be close to the deterministic high growth subsidy in the 

short term but too high in the medium term until learning takes place in 2060. 

Therefore, investors in the high growth SOW reduce renewable energy investments in 

the short run and increase them in the medium term. The opposite holds for the low 

growth scenario: investors will increase investments in the short run and decrease them 

in the medium term when the subsidy is too low. As the subsidy under uncertainty 

deviates from the deterministic subsidy in both SOWs it leads to distortions in capital 

investments for renewable energy technology. As households desire a smooth 

consumptions stream, investments in other energy sources are adapted to fit household's 

consumptions stream. 

 

Figure 3.2: Uncertain economic growth  learning in 2060 



 LIMITS – LOW CLIMATE IMPACT SCENARIOS AND THE IMPLICATION OF 

REQUIRED TIGHT EMISSION CONTROL STRATEGIES 
PROJECT NO 282846  

 

DELIVERABLE NO. 2.4 

 

 

 11 

 

 

From figures 3.2 we can see that the subsidy under uncertain economic growth 

distorts all investment paths compared to the deterministic SOWs. Nevertheless, the 

other energy sources adapt to the changes in renewable energy supply in such a way that 

total energy supply is close to the deterministic least-cost path. In this scenario, the 

expected discounted welfare losses are -0.016% relative to the case when the 

government implements a subsidy under perfect information. 

 

3.2  Feed-in-tariff 
A feed-in-tariff is a renewable energy subsidy that is cross financed with a tax 

on nuclear and fossil energy (or vice versa). A high feed-in-subsidy (feed-in-tax) on 

renewable energy requires a high tax (subsidy) on nuclear and fossil energy, 

constraining the government from subsidizing renewable energy in a cost-effective way, 

particular in the long term. A noticeable difference between the feed-in-subsidy and the 

subsidy is that the feed-in-subsidy converges to zero in the long run, as the income from 

the diminishing nuclear and fossil energy can not support a higher feed-in-subsidy. 

 

 

Figure 3.3: Uncertain economic growth  learning in 2060 

 

Similarly to the renewable energy subsidy, the feed-in-subsidy is too high 

between 2025-2060 for the low growth SOW and too low for the high growth SOW. 

Again, to maximize profits, investors increase investments when the subsidy is high and 

decrease investments when the subsidy is low. However, as the other energy sources 
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adapt to the changes in renewable energy supply, total energy is only minimally 

affected. 

 

Figure 3.4: Uncertain economic growth  learning in 2060 

 

The feed-in-tariff under uncertainty leads to discounted welfare losses of -

0.041% (compared to discounted welfare under the deterministic subsidy) which is 

slightly higher than the welfare losses stemming from the subsidy under uncertainty. 

 

3.3  Quota 
The subsidy and the feed-in-tariff are both price instruments, while the quota is a 

command-and-control instrument that specifies the minimum share of renewable energy 

to total energy supply. Figure 3.5 shows the deterministic quota paths for both SOWs 

and those under uncertain economic growth. 
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Figure 3.5: Quota under uncertain economic growth  learning in 2060 

 

When the growth rate is high all energy types are more productive. 

Consequently, as fossil emissions are constrained with the climate policy, renewable 

energy becomes faster the largest energy source. For this reason, the deterministic high 

growth SOW has a higher quota than the low growth SOW. The quota under uncertainty 

leads to different renewable energy shares than the price instruments under uncertainty. 

While the price instruments cause an over-supply in the high growth SOW and an 

under-supply in the low growth SOW, the opposite occurs under the quota. Following 

the deterministic high growth quota would lead to over-investments in renewable 

energy in the low growth SOW, while following the deterministic low growth quota 

would result in an under-investments in renewable energy in the high SOW. In order to 

reduce distortions, the resulting quota under uncertainty lies between the deterministic 

high and low growth quotas. However, the quota under uncertainty does not take the 

deterministic equivalent path, but a path close to the high growth SOW quota. As the 

largest share of energy is coming from renewable energy source in the long term, the 

government prefers to have an over-investment in renewable energy in the low growth 

SOW, rather than an under-investment in high growth SOW. 
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Figure 3.6: Uncertain economic growth  learning in 2060 

 

Similarly, as for the other two policy instruments, both fossil and nuclear 

investments move in such a way that the total energy path remains almost unaffected. In 

comparison to the deterministic subsidy, the renewable energy quota results in 

discounted welfare losses of -0.036%. In this scenario, the quota performs better than 

the feed-in-tariff but worse than the subsidy. 

 

3.4 Varying the time of learning 
The time of learning influences policy decisions under uncertainty. Under short 

lived uncertainty (i.e. till 2030) the government implements a subsidy equivalent to the 

deterministic equivalent path. 
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Figure 3.7: Time of learning: 2030 and 2050 

 

However, when the uncertainty lasts longer, i.e.until 2050, the subsidy under 

uncertainty deviates from this path and becomes more aggressive in the short term. If 

uncertainty lasts for a long time, the deterministic equivalent subsidy will be over-

subsidizing from 2030-2060 in the high growth SOW resulting in very low renewable 

energy investments in the short term. Therefor, to reduce the amount of postponed 

renewable energy investments, the government deviates from the deterministic 

equivalent path and increases the subsidy in the short term. 

Varying the time of learning has similar effects on the quota under uncertainty. 

For short lived uncertainty, the quota takes the deterministic equivalent path. On the 

other hand, for longer lasting uncertainty there is a hedging behavior as the quota under 

uncertainty goes closer to the deterministic high growth quota. 

 

Figure 3.8: Time of learning year 2040 and 2060 
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3.5  Comparing the Policy Instruments 
Comparing the performance of the three policy instruments by varying the time 

span of uncertainty and the deviation of the high and the low growth rates from the 

deterministic equivalent growth rate, we find that the renewable energy subsidy still 

remains the instrument with the lowest welfare losses under economic uncertainty.  

 

Figure 3.9: Percentage welfare losses 

 

Figures 3.10 show the renewable energy price paths. Despite the uncertainty, the price 

paths are quite close to the deterministic price paths. For the case of the price 

instruments, the reason is that an over-subsidy leads to an over-investment in renewable 

energy which drives the price down. As a result, the total price path (the market price 

plus the subsidy or the feed-in-subsidy) is close to the deterministic price path. Only in 

the short run the price instruments result in some deviation from the deterministic price 

paths, as it is too costly to ramp up renewable energy investments in response to the 

over-subsidy (because only a small amount of learning-by-doing has occurred). As the 

deterministic quotas are very close to each other in the short term, while the 

deterministic subsidies are far away from each other, there are much smaller price 

distortions in the short run under the quota. 
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Figure 3.10: Renewable energy price paths under Subsidy, Feed-in-tariff, and Quota 

4. Uncertainty in learning rate 
 

The learning rate of renewable energy is an important factor for the design of a 

least-cost technology policy. A high learning rate increases the return on investment on 

renewable energy, while a low learning rate reduces the return on investment. On the 

other hand, under a high learning rate the capacity of renewable energy can be scaled up 

faster, raising the opportunity cost of investment in renewable energy technology in the 

short term. Hence, when the learning rate is high, investments in renewable energy are 

postponed to later periods when some learning-by-doing has occurred. When the 

learning rate is low, it takes longer to build up capacity, resulting in higher investments 

in renewable energy in the short and medium term. As deterministic investment paths 

differ from each other in the high and low learning scenarios, the deterministic policy 

instrument does as well. In the following example we assume the government does not 
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know whether the  or  is the true SOW till 2035. The 

deterministic equivalent learning rate is: . 

 

4.1 Subsidy 
The deterministic subsidy in the low learning rate SOW is more aggressive in 

the first decade and peaks earlier compared to the deterministic low learning rate 

subsidy. However, when the government is uncertain about the true learning rate it does 

not subsidize according to the deterministic equivalent path, but instead takes a path 

very close to the low learning rate SOW subsidy. In 2035, when the government learns 

about the true SOW, it increases the subsidy for the high learning rate SOW but remains 

at the same path in the low learning rate SOW. Hence, it is more cost-effective to 

postpone renewable energy investments in the high learning rate SOW, rather than over-

investing in renewable energy in the low learning rate SOW. 

 

Figure 4.1: Uncertainty in learning rate till 2035 

 

When the learning rate is high, renewable energy generation can propagate faster 

compared to the low learning rate SOW. Because of this flexibility, it is easier to fix the 

deficit in renewable energy due to the under-subsidy at a later stage. Therefore, due to 

the relative low flexibility in the low learning rate SOW and to the relative high 

flexibility in the high learning rate SOW, the government subsidizes close to the 

deterministic subsidy for the low learning rate SOW and then fixes the damage later in 

case the learning rate is high. Discounted welfare losses from the sub-optimal subsidy 

are only -0.007%. 
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4.2 Feed-in-tariff 
The feed-in-tariff is not as flexible as the subsidy, as the feed-in-subsidy needs 

to be financed by a feed-in-tax on fossil and nuclear energy. However, the feed-in-

subsidy takes a very similar path as the subsidy, except that the feed-in-subsidy 

converges to zero in the long term.  

 

Figure 4.2: Uncertainty in learning rate till 2035 

Similar to the subsidy under uncertainty, the feed-in-tariff follows the low 

learning rate SOW feed-in-subsidy till the time of learning (in 2035), and then increases 

in the high learning rate SOW, to fix the damage it has done. Consequently, there is an 

under-investment in renewable energy in the high learning rate SOW. Discounted 

welfare losses are -0.018% which is much higher than under subsidy. 

 

4.3 Quota 
The share of renewable energy relative to total energy for the low and high 

learning rate SOW differ mainly in the medium term. When the learning rate is low, 

renewable energy investments need to be higher because it takes longer time to build up 

capacity. When the learning rate is high, it is less costly to ramp up renewable energy 

generation in later periods. 
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Figure 4.3: Uncertainty in learning rate till 2035 

 

As the deterministic quota paths are close to each other, the quota under 

uncertainty takes the certainty equivalent path. The result is an over-investment in 

renewable energy for the high learning rate SOW and an under-investment in renewable 

energy in the low learning rate SOW. The quota results in lower welfare losses than the 

subsidy and the feed-in-tariff in this scenario, or -0.00095%. 

 

4.4 Varying the time of learning 
When the uncertainty is short lived (i.e. until 2035), the government implements 

a subsidy that follows the deterministic low learning rate subsidy. 

 

Figure 4.4: Uncertainty in learning rate till 2035 and 2060 
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However, when uncertainty persists longer (i.e. until 2060), the distortions in the 

high learning rate SOW would be too great with the same strategy: renewable energy 

investments would be postponed for too long resulting in a substantial over-investment 

in nuclear energy. Hence, the subsidy increases again after 2035 to reduce the 

distortions in the high learning rate SOW on the cost of the low learning rate SOW.  

 

Figure 4.5: Uncertainty in learning rate till 2035 and 2060 

 

The quota under uncertainty follows the determinist equivalent quota closely for 

both short and long lasting uncertainty. If the quota approaches the deterministic high 

learning rate quota even less renewable energy is supplied in the low learning rate 

SOW, driving costs up as it takes longer to build up renewable energy capacity in the 

low learning rate SOW. If the quota followed the deterministic low learning rate quota 

there would be a higher share of renewable energy in the high learning rate SOW, again 

resulting in high opportunity cost as the least-cost strategy is to postpone renewable 

energy investments. Thus, the government is forced to take the deterministic equivalent 

path. 

 

4.5 Comparing the Policy Instruments 
Comparing the performance of the three policy instruments we find the subsidy 

to result in the lowest welfare losses when the time of learning is short (i.e. until 2035), 

while the renewable energy quota results in the lowest welfare losses when the 

uncertainty lasts for a long time (i.e until 2060).  
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Figure 4.6: Percentage welfare losses 

 

The deterministic quota paths deviate mainly from each other in the short and 

medium term, making it relative robust to long lasting uncertainty. When we increase 

the deviation away from the standard growth rate we get the same result: the subsidy 

still remains the least-cost policy instrument under short lasting uncertainty and the 

quota under long lasting uncertainty. 

From Figure 4.7 it can be seen that the quota causes less price distortions than 

the price instruments just as for the case of uncertain economic growth. Under the 

quota, investors are more constrained to change their investment paths to maximize 

profit. Hence, the quota is not always welfare maximizing, but it does lead to more 

stability than the price instruments.  
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Figure 4.7: Uncertainty in learning rate till 2035 

 

5. Conclusion 
 

With an exogenously given emission constrain, we study and compare the 

performance of three types of technology policies, the renewable energy subsidy, the 

feed-in-tariff, and the renewable energy quota, under economic uncertainty. The effect 

of two types of economic uncertainty is analyzed: a) uncertainty in economic growth, 

and b) uncertainty in learning rates of learning carbon-free technology. The uncertainty 

is modeled as parametric uncertainty applying the method of discrete stochastic 

programming. 

Given a market failure in the learning carbon-free energy market in form of 

intra-sectoral knowledge spillovers, the government has the choice between the three 

policy instruments: a renewable energy subsidy, a feed-in-tariff, or a renewable energy 

quota. When the government has perfect information, the renewable energy subsidy is 
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the 'first-best' policy instrument as it can perfectly internalize the spillover externality if 

applied in such a way that social return on investments is equal to private return on 

investments at all points in time. When the government is facing uncertainty about 

economic conditions, optimal implementation of the subsidy might not be possible. 

Consequently, we apply the Integrated Policy Assessment Model PRIDE to analyze if 

the subsidy remains the least-cost technology policy under uncertainty. 

Our analysis suggests that the best performing policy instrument under 

uncertainty varies depending on type of uncertainty and the level of the uncertainty. 

Under uncertain economic growth the subsidy results in the lowest welfare losses 

compared to the other two policy instruments in all our scenarios. Under an uncertain 

learning rate of the renewable energy technology we find the subsidy to outperform the 

other policy instruments when the time of learning is short (i.e. for three decades), but 

the quota results in the lowest welfare losses when the uncertainty lasts for a long time 

(i.e. for five decades). In all scenarios, we find the quota results in more price stability 

than the price instruments because profit maximizing investors are more constrained to 

change their investment paths under command-and-control policy relative to price 

instruments. However, for both uncertainty types the renewable subsidy remains the 

least-cost policy instrument as long as the uncertainty is moderate. 

 

In our setting we find uncertainty neither lead to large welfare losses nor to 

strong hedging behavior. One reason behind this result is that the economy is relative 

flexible in our setting. All elasticities of substitution between different energy sources 

are high to fit the electricity market. For example, when renewable energy is under-

subsidized, resulting in an under-investment in renewable energy for some period, it is 

relative inexpensive to make up for the lack of renewable energy with increasing fossil 

or nuclear energy. Furthermore, a stricter cap on fossil emissions is likely to increase 

the effect of uncertainty, as there is less fossil energy available to compensate for 

renewable energy distortions. 
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