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Abstract

We investigate intertemporal dominance conditions of finite unidimensional
streams of outcomes in discrete time. We follow the time dominance approach
based on unanimous net present value comparisons for classes of discounting
factors representing temporal preferences. We first show that the infinite order
of time dominance is equivalent to robust dominance for all classical exponential
discounting factors with positive discount rate. We then parametrically restrict
the class of discounting factors, by imposing a limit on the decrease of the weight
attached in the current evaluation, between the outcomes of two future adjacent
periods. Our results overcome the problem of dictatorship of the present in
intertemporal evaluations and provide a parametric dominance condition that
makes explicit the policy maker’s trade-off, between current and future periods.
Keywords : Time Dominance, Discounting, Orderings, Sustainability.

1 Introduction

Increasingly today we are being asked to evaluate public projects, environmental poli-
cies or investments activities whose effects will be spread out over a number of years.
Prominent examples include, for instance, global climate change, radioactive waste
disposal, loss of biodiversity, thinning of stratospheric ozone, groundwater pollution,
minerals depletion. These analysis involve in many cases intergenerational choices
or, in general, intertemporal evaluations for which the specification of appropriate
discount structures is crucial.

The evaluation of long term projects has been a source of strong debate in the
economic literature and in cost-benefit analysis, questioning mainly the use of the
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standard exponential discount function. The exponential discount rate is considered
unsatisfactory mainly because the consequences in the distant future become negli-
gible as the weight attached to their current evaluation becomes very small.

Recently, the notion of time declining discount rates has gained considerable sup-
port from three main pillars of the economic literature. Experimental evidence sug-
gests the use of hyperbolic discounting [Laibson, 1997; Loewenstein and Prelec, 1992]
or its discrete time approximation, the quasi-hyperbolic discounting [Phelps and Pol-
lak 1962]. Uncertainties about the discount factors, that may motivate the use of the
Gamma discounting [Weitzman, 1998]. While the concern for avoidance of tyranny
of future or present evaluations have motivated alternative rules in the social choice
literature [Chichilnisky, 1996; Li and Löfgren, 2000].

This work is centered on deriving intertemporal dominance conditions for or-
dering finite streams of unidimensional cardinal outcomes, measured for instance as
cash flows, distributed in discrete time and considering different classes of discount-
ing functions subject to various restrictions. The analysis relates to several strands
of literature including the work by Foster and Mitra (2003) on ranking investment
projects in terms of net present value irrespective of the choice of the discount rate;
Ekern (1981) which focuses on deriving intertemporal evaluations that are robust
to the use of different formulas and values for discounting future benefits and costs;
Karcher et al. (1995), Trannoy (2006) and Muller and Trannoy (2012) that inves-
tigate multidimensional stochastic dominance conditions with possible applications
to intertemporal evaluations, and to more general multivariate stochastic dominance
conditions as in Denuit et al. (2010). The discrete time setting of the model also
relates it to Fishburn and Lavalle (1995) work on stochastic-dominance relations for
probability distributions on a finite grid of evenly-spaced points and De La Cal and
Cárcamo (2010) which present an analogous counterpart for inverse stochastic dom-
inance conditions.

Moving from the time dominance work of Bøhren and Hansen (1980) and Ekern
(1981) we extend existing results in two directions thereby investigating the possibility
of increasing the comparability induced by the dominance conditions.

We analyze the impact of considering complete monotone discounting factors on
the infinite order time dominance, and we further consider dominance conditions
that overcome the issue of dictatorship of the present by restricting the class of
discounting factors, imposing a limit on the decrease of the weight attached in the
current evaluation between the outcomes of two future adjacent periods. Our main
result will be implicitly characterized by the choice of two time thresholds: first, the
horizon time T, that identifies the period after which the differences in the streams
of cash flows are assumed to be negligible; second, the time period H, before which
the discount structure gives enough weight to the outcomes, not allowing them to
become negligible.

The paper proceeds as follows. In the next section we present in more details the
different attitudes towards discounting and we discuss the notion of time dominance,
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presenting some preliminary tools and findings, necessary to achieve our main results
in Section 3. In order to obtain a novel toolkit for evaluating projects we investigate
the potential of the time dominance approach following two alternative routes. The
first subsection of the Section 3 investigates infinite order time dominance conditions
and the second one, parametrically restricts the set of discounting factors. Section 4
provides some concluding remarks.

2 Setting

Our approach is focusing on models of intertemporal comparisons having as a central
point the discounting functions defined over streams of outcomes that are spread over
a discrete and finite time span. While the choice of discrete time is driven mainly by
the fact that empirical intertemporal comparisons of costs and benefit are commonly
made over time grids, the choice of finite time is taken in order to avoid that the long
future cash flows cumulate in an infinite advantage, giving in this way a dictatorship
power of the future over the present.

We build on the setting introduced by Bøhren and Hansen (1980) and Ekern
(1981), that derives stochastic dominance conditions applied to outcomes ordered on
the time dimension. The decision maker evaluates intertemporal prospects by ranking
streams of unidimensional cardinal outcomes, [cash flows, costs and benefits or utili-
ties] arising from alternative projects in terms of higher Net Present Value (NPV ).
The ranking is made robust to all discount functions drawn from a particular class,
which is defined by adding curvature restrictions on their derivatives with respect to
time.

Consider two temporal profiles a and b represented by their return vectors a =
(a0, a1, ..., aT ) ∈ RT+1 and b = (b0, b1, ..., bT ) ∈ RT+1, where time is discrete and
finite and t = 0 denotes the present, while T is the horizon of the most long-lived
project. For simplicity of notation, all projects are represented as having the same
finite horizon T ; if the projects had different horizons, the shorter vector could be
augmented with zero entries to reconcile the size difference. When comparing them,
project a will be strictly preferred to project b if and only it will lead to a higher
NPV. The problem can be reformulated by considering the net project x

x = (x0, x1, ..., xT ) = (a− b) = (a0 − b0, ..., aT − bT )

and requiring its sign to be (strictly) positive.
In discrete time, for a given set of discount factors v, the NPV of x, written

NPVv(x), is defined as

NPVv(x) :=
T∑

t=0

vt · xt,

where the set v = (v0, v1, . . . , vT ) represents the temporal preferences and w.l.o.g. vt
will be normalized such that v0 = 1.
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The NPV function can be thought of as a polynomial in terms of the discounting
functions vt, with coefficient values that represent the net cashflows xt.

2.1 How to evaluate the distant future?

The most widely used discounting structure in economics is the exponential discount-
ing introduced by Samuelson (1937) and characterized by a constant rate of discount
r, with

vt = δt,where δ =
1

1 + r
, r > 0. (1)

A growing body of literature argues that, this conventional exponential discount
factor turns out to be unsatisfactory when assessing sustainable development mainly
because of its tendency to favor a myopic judgement of policies and, in the same time,
for its inappropriateness to treat intergenerational issues [see, for example Schelling,
1995; Lind, 1995]. Recently, time declining discount rate has gained considerable
support from theoretical and empirical studies. Table 1 presents the main discounting
structures. First, experimental evidence suggests that people are more sensitive to
a given time delay if it occurs closer to the present than if it occurs farther in the
future, employing a higher discount rate to trade-offs now than to trade-offs in the
future. This phenomenon is captured by the hyperbolic discount factor [Laibson,
1997; Loewenstein and Prelec, 1992].

Table1
Discount Factor Expression

Hyperbolic vt = (1 + γt)−α/γ , α, γ > 0
Proportional vt = (1 + γt)−1, γ > 0
Power vt = (1 + t)−α, α > 0
Quasi-hyperbolic vt = β(1 + δ)−t, 0 < β ≤ 1, δ < 0
Constant Sensitivity vt = exp[−(at)b], a, b > 0.

The parameter γ measures the extent of departure from the exponential function
such that, if γ → 0, vt approaches the standard exponential function; if γ →∞ (very
large), vt approaches a step function; when γ > 0, vt lies below the exponential
function for low values of t and above it for high values of t. Given that α andγ are
positive, the discount rates implied by the hyperbolic discounting decrease over time.

Proportional discounting [Hernstein, 1981] and power discounting [Harvey, 1986]
are the special cases of hyperbolic discounting in which α = γ and γ = 1, respectively.
The quasi-hyperbolic discounting was introduced Phelps and Pollak (1962) as a dis-
crete approximation of the hyperbolic discounting, and the parameter β reflects the
special status of the first period. Therefore, if β = 1 quasi hyperbolic discounting
reduces to constant discounting, and if 0 < β < 1 the discount structure mimics the
qualitative properties of the hyperbolic function (higher today that tomorrow), while
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maintaining most of the analytical tractability of the exponential discount function
(constant from tomorrow on). None of the above models is able to accommodate
increasing impatience and this fact represents a drawback, in particular for individ-
ual analysis. Even though decreasing impatience is the common pattern (although
there are studies that observe increasing impatience even at an aggregate level) there
will always be individuals who are increasingly impatient. The constant sensitivity
model [Ebert and Prelec, 2007], tractable as a hyperbolic model, can accommodate
both moderately decreasing and increasing impatience. The parameter a in constant
sensitivity reflects impatience and the parameter b the sensitivity to time. In other
words it reflects the degree of decreasing impatience. For b < 1 a decision maker is
decreasingly impatient, for b > 1 he is increasingly impatient, and for b = 1 constant
sensitivity reduces to constant discounting.

A second pillar of literature, supporting time declining discount rate, is based on
the work of Weitzman (1998) in which the clue lies in how one treats the uncertainty
about the future. The uncertainty regarding the determinants of the discount rate,
when modeled with a probability distribution (any), will justify a declining discount
rate, moreover an hyperbolic shaped discount function. Therefore assuming a Gamma
distribution with parameters µ, σ Weitzman obtained the Gamma discount rate

R(t) =
µ

1 + tσ2/µ
.

Finally, the social choice literature simply says that a ‘tyranny of the present‘
is not acceptable and that the discount rate issue should be determined by specific
axioms that make such tyranny impossible. The contributions of Chichilnisky (1996)
and Li and Löfgren (2000), even if different in approach, show that if one insists that
there must be no dictatorship of one generation over another, the resulting program
will have a discount rate which is a declining function of time.

In the next section we will discuss the notion of time dominance and show that
all these attitudes towards discounting can be incorporated in it.

2.2 Aspects of Time Dominance

The time dominance (TD) approach applies the stochastic dominance methodology to
a temporal context, where the consequences of a decision alternative are distributed
over time. Considering that stochastic dominance puts successively stronger restric-
tions on the utility function representing risk preferences, TD restricts, in a similar
way, the discounting functions representing temporal preferences. In this way the
time dominance approach provides rules for a partial ordering of temporal prospects.

Therefore, TD calls for curvature restrictions to classify discounting functions, in
analogy with what is done in the stochastic dominance literature, where assumptions
are imposed on the utility functions, or on probability distortion functions. Let
v0t = vt, then for any number k = 1, 2, ..., n of restrictions imposed on the discount
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function, let
vkt = vk−1t+1 − vk−1t .

Thus, vkt is obtained by differencing k times the function vt. The widest class of
discounting functions obtained for k = 0 and denoted V0, requires simply that, at any
point in time more is preferred to less. Formally,

V0 = {v : vt > 0, ∀t with v0 = 1}.

Downward sloping discounting functions representing time impatience belong to V1,
implying that a dollar at time t is preferred to a dollar at time t +∆ (∆ > 0). The
set V2 contains the functions that are decreasing and convex in t [i.e. in the discrete
case, with non increasing differences].

By adding successive restrictions on vkt , subsets of discounting functions are re-
cursively defined:

Vk = {v : v ∈ Vk−1, and (−1)kvkt > 0}.

Hence, v belongs to the class Vn if and only if vkt alternates in sign (starting with a
positive sign), as k goes from 0 to n. The domain of vkt is the set {0, 1, 2, . . . , T −k} in
discrete time, in fact in discrete time, every time we add a condition on the discount
functions v, we refer to a preceding period and therefore we loose a period from
the finite set {0, 1, . . . , T}. Following this logic, the number n of restrictions on the
discounting functions can not overtake the horizon T.

Let N denote the set of natural numbers. We will also consider a larger family of
sets V ∗

k whose definition requires weak inequalities (≥) to hold, clearly Vk ⊂ V ∗

k for
all k ∈ N∗ := N∪ 0. For this set of functions it is possible that vt = 0 for some t > 0.

Definition 1 NPVv(a) > NPVv(b) for all v ∈ Vn is denoted as a ≻n b.
NPVv(a) ≥ NPVv(b) for all v ∈ V ∗

n is denoted as a �∗n b.

The class of time dominance stochastic orders ≻n for n ∈ N has been investigated
in Ekern (1981), the results for �∗n for n ∈ N can be derived analogously.

Similar to the inverse stochastic dominance approach, TD concentrates on re-
peated summations of outcomes1, resulting that the ordering of alternatives will de-
pend on the mathematical properties of the cash flow distribution of net x.

Rewriting the initial cash flow xt = X0
t and calling it Stage 0, using repeated

summations, for n = 1, 2, . . . , T, we get

Xn
t :=

t∑

s=0

Xn−1
s .

1The main difference is that, while in the case of Inverse Stochastic Dominance, the outcomes
are ranked according to their magnitute, in the TD the outcomes are ordered according to the time
dimension.
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The Stage 1 of repeated summations at any point in time is nothing but the sum
of the initial cash flows, starting from 0 up to that point in time. Recursively, the
Stage n of repeated summations at any point in time is sum of the previous level of
repeated summations, up to that point in time, starting from 0.

Such repeated cumulations of consequences correspond to repeated cumulations
of probabilities in the stochastic dominance approach, although there are some im-
portant differences. Unlike probabilities, cash flows may be negative and different
projects’ cash balances at the horizon do no necessarily coincide.

Hence Xk
t may decrease in t, and X1

a(T ) �= X1
b (T ). In fact, the TD conditions are

more closely related with the inverse stochastic dominance conditions [see De La Cal
and Cárcamo, 2010; Muliere and Scarsini, 1989; Yaari, 1987].

Using a time dominance methodology, the information about the Xk
t values for

1 ≤ k ≤ n may suffice to conclude whether some decision alternatives are definitely
inferior for all discounting functions in the class Vn.

Definition 2 (TD of nthorder.) i)Project a dominates b by the nth order TD, de-
noted by a �n b, if and only if for the net project x = a− b

Xk
T ≥ 0 for all k = 1, 2, ..., n− 1

Xn
t ≥ 0 for all t ∈ {0, 1, ..., T}.

ii) Project a strictly dominates b by the nth order TD, denoted by a >n b, if there
are strict inequality (>) holding for some comparisons.

In order to illustrate the concept, consider the matrix {Xk
t } presented in Table 2

where k = 1, 2, ..., n and t = 0, 1, ..., T.

Table 2
Year 0 1 · · · t · · · T − 1 T

X0
t x0 x1 · · · xt · · · xT−1 xT

X1
t

0∑

s=0

X0
s

1∑

s=0

X0
s · · ·

t∑

s=0

X0
s · · ·

T−1∑

s=0

X0
s

T∑

s=0

X
0
s

X2
t

0∑

s=0

X1(s)
1∑

s=0

X1(s)
t∑

s=0

X1
s

T−1∑

s=0

X
1
s

T∑

s=0

X1
s

...
...

...
...

...

Xk−1
t

0∑

s=0

Xk−2
s

1∑

s=0

Xk−2
s

t∑

s=0

X
k−2
s

T∑

s=0

Xk−2
s

Xk
t

0∑

s=0

Xk−1
s

1∑

s=0

Xk−1
s · · ·

t∑

s=0

Xk−1
s · · ·

T∑

s=0

Xk−1
s

XT
t

0∑

s=0

X
T−1
s

1∑

s=0

X
T−1
s · · ·

t∑

s=0

XT−1
s · · ·

T∑

s=0

XT−1
s

XT+1
t

0∑

s=0

X
T
s
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Note first that ∑0
s=0XT−1

s =
∑0

s=0X0
s = x0,

which means that the first column of the matrix consists of identical elements that
are equal to the first net cash flow x0. Secondly,

Xk
t =

∑t
s=0 Xk−1

s =
∑t−1

s=0Xk−1
s +Xk−1

t ,

so that each term in the matrix is the sum of the one before it (on the same row) and
the one above it (from the same column). Third, for a given stage k of cumulation,
the matrix elements participating in the time dominance conditions include all the
elements of row k along with the terminal elements of the higher positioned rows,
k − 1, k − 2, ..., 1. All these elements have been highlighted in Table 1 in bold face.

Note also that, whatever the TD of order k, the number of the matrix elements
to be examined as required by the TD conditions always remains (T + 1). Thus, no
additional restrictions are imposed if for a fixed T we consider the class VT+θ, for
θ = 1, 2, . . . , instead of VT .

Another important note is that the cumulative values at every stage can be written
as a summation of the initial values using binomial coefficients, as follows

Xk
t =

t∑

s=0

Xk−1
t =

t∑

j=0

xj · C
t+(k−1)−j
k−1 , where CT

k =
T !

k!(T − k)!
.

Thus, the matrix on Table 2 can be rewritten using the combinatorics coefficients.
The Example 1 illustrates this set of observations.

Ekern (1981) result relates the nth order time (strict) dominance to the NPV
(strict) superiority for discount functions in Vn.

Theorem 1 (Ekern 1981) a ≻n b if and only if a >n b.

The strict TD of project a over b, a ≻n b, implies that the test of nth order TD is
verified always for the weak inequalities and just sometimes for the strict inequalities.
A "weaker" version of the theorem can also be derived in analogy with Ekern (1981)
result.2

Remark 1 a �∗n b if and only if a �n b.

Example 1 Consider a net project x with time horizon T = 4 and n = 2. The 2nd

order time dominance conditions, visualized in the table below, are associated with the

2We omit here the straightforward proof.
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non negative sign of the bold faced elements.

.

t 0 1 2 3 4
xt x0 x1 x2 x3 x4

X1
t x0

t=1∑

j=0

xj · C
1−j
0

t=2∑

j=0

xj · C
2−j
0

t=3∑

j=0

xj · C
3−j
0

t=4∑

j=0

xj·C
4−j
0

X2
t x0

t=1∑

j=0

xj·C
2−j
1

t=2∑

j=0

xj·C
3−j
1

t=3∑

j=0

xj·C
4−j
1

X3
t x0

t=1∑

j=0

xj · C
3−j
2

t=2∑

j=0

xj · C
4−j
2

X4
t x0

t=1∑

j=0

xj · C
4−j
3

X5
t x0

Building on the framework presented above, the conditions of TD of a net project
can be rewritten making use of a matrix of coefficients that are time dependent. The
shape of this matrix depends on the horizon T, considered for the net project, and
on the number of restrictions n imposed for the discounting functions.

We have seen in Example 1 that when n < T, meaning that the number of
conditions imposed on the discount functions is lower than the discrete time horizon,
the elements representing the time dominance conditions are the ones from the row n,
together with the terminal elements of the higher positioned rows, n−1, n−2, . . . , 1.

When n = T, the time dominance conditions require to check the sign of the ele-
ments on the diagonal of the matrix. Reconsidering the example above, the conditions
would be 





t=4∑

j=0

xj · C
4−j
0 ≥ 0

t=3∑

j=0

xj · C
4−j
1 ≥ 0

t=2∑

j=0

xj · C
4−j
2 ≥ 0

t=1∑

j=0

xj · C
4−j
3 ≥ 0

x0 ≥ 0

,

with strict inequalities for some conditions. Written in matrix form, the above men-
tioned comparisons become

(x0, x1, x2, x3, x4) ·






C4
0 C4

1 C4
2 C4

3 C4
4

C3
0 C3

1 C3
2 C3

3 0
C2
0 C2

1 C2
2 0 0

C1
0 C1

1 0 0 0
C0
0 0 0 0 0





≥ 0.
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Therefore, in order to have dominance, one should check the sign of the elements
of the vector obtained from the vector of net cash flows x multiplied by a square
matrix, denoted ΠT , of dimensions (T + 1)× (T + 1) that is

(x0, x1, . . . , xT ) ·






CT
0 CT

1 · · · CT
T−1 CT

T

CT−1
0 CT−1

1 · · · CT−1
T−1 0

...
...

...
...

C1
0 C1

1 · · · 0 0
C0
0 0 · · · 0 0






.

where the nonzero entries of ΠT form an inverted Pascal’s triangle (a triangle array
of the binomial coefficients).

For the cases in which the product conditions, x · ΠT ≥ 0, are not conclusive,
the dominance results can be improved by postponing the horizon T to a "longer
horizon" T

′

> T. The initial net project x of length T can thus be transformed
into an equivalent project xT

′

of length T
′

> T by appending T
′

− T zeroes to x.
Of course, adding zero net cash flows from time T onward does not influence the
real attractiveness of either projects, but for purely mathematical reasons it may
increase the discriminatory power of the dominance approach. Other scholars made
some related observation with respect to strengthening their results by postponing
the time horizon of the projects taken into consideration: Foster and Mitra (2002)
on obtaining necessary and sufficient conditions for unambiguous dominance; Pratt
and Hammond (1979) on strengthening the bound on the number of internal rates of
return.

Example 2 Let consider the net project x = (1,−3, 2.5) with time horizon T = 2.
In this case no TD result could be obtained, as X1

1 < 0 and X0
2 = x2 > 0, X2

0 >
0. In contrast, by sufficiently postponing the horizon into the future to T ′ = 6, time
dominance can be established

t 0 1 2 3 4 5 6
xt 1 −3 2.5 0 0 0 0
X1
t 1 −2 0.5 0.5 0.5 0.5 0.5

X2
t 1 −1 −0.5 0 0.5 1 2

X3
t 1 0 −0.5 −0.5 0 1 3

X4
t 1 1 0.5 0 0 1 3

.

In this way a new matrix ΠT ′ can be constructed and the product rule, reapplied.
The product of the net cash flow vector x with this new matrix yields not only a
sufficient dominance condition, but also a necessary condition.

Proposition 1 Let n > T, and xn ∈ Rn+1 where xnt := at − bt for t ∈ {0, 1, . . . , T}
and xnt = 0 for t ∈ {T + 1, . . . , n}, then a >n b if and only if there exists a matrix
Πn such that xn · Πn ≥ 0 (with some >).
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In this way we can allow for the number of restrictions put on the discount func-
tions to exceed the value of T. This novel representation of TD conditions is an
adjustment that will contribute to the derivation of subsequent results.

How far can one postpone the horizon and in this way increase the number of
restrictions put on the discount functions in order to find dominance? Is postpon-
ing the horizon at infinity going to guarantee some dominance? Starting from the
TD structure presented above, we examine its applicability to different discounting
functions and then, after restricting the set of admissible functions, we extend our
analysis to infinite order time dominance.

3 Results

3.1 V∞ time dominance

Notice that all the functions presented in the Section 2.1 are positively valued when
t ≥ 0 and have successive differences vkt , that alternate in sign, as k goes from 0 to n,
being in line with the conditions imposed on the discounting functions from the TD
approach seen in the Section 2.2. Knowing that we can allow for n, the number of
restrictions put on the discount functions, to exceed the value of the discrete time
horizon T, the next step is to incorporate time evaluations where n −→∞.

Considering Vn, the set of real valued functions v on [0,∞) whose recursive dif-
ferences through order n alternate in signs, we can introduce an enlarged class of
discount functions, V∞.

Definition 3 V∞ := Vn for n −→∞.

The relation between finite and infinite degree TD concerns the following property
of sequences of relations.

Lemma 1 (Thistle 1993) Let {yi}
∞ be an infinite sequence, and let {yi}

n be the
subsequence of the first n terms.

If {yi}
n has property P for all finite n, then {yi}

∞ has property P.

We define the Infinite TD a ≻∞ b based on an approach by Thistle (1993). This
result is of interest because it appears to be the only case where a ranking at a given
degree of TD implies ranking at a lower degree.

Remark 2 (Thistle 1993) a ≻∞ b if and only if ∃ n ∈ N∗ s. t. a ≻n b.

Proof. Sufficiency. Assume that a ≻∞ b. Let us suppose that a ⊁n b. for all finite
n. Applying the Lemma 1 this implies that a ⊁∞ b, contradicting the hypothesis.
Therefore a ≻∞ b −→ a ≻n b for some finite n.

Necessity. a ≻n b implies that a ≻n+i b for all i ≥ 1. Thus a ≻n b −→ a ≻∞ b.
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Note that all the discounting functions listed in Table 1 in Section 2.1 as well as the
standard exponential discounting satisfy the conditions for being in Vn, and possess
an additional property, which transposes in discrete time the notion of complete
monotonicity3. In particular, the notion demands that the successive differences of
the discount function vt alternate in sign. By letting n −→ ∞ we can first remark
that all these functions are in V∞, and secondly, based on an approach introduced by
Thistle (1993) on infinite stochastic dominance, we can relate finite time dominance
with infinite one and denote it by a >∞ b.

The assumptions made until now, may seem reasonable but next theorem is going
to highlight some limitations of using them to rank intertemporal projects. In order to
derive our result we first define the δ Time Dominance. We call δ TD the conditions
(necessary and sufficient) for which the NPV of a is larger than the NPV of b (or
equivalently the NPV of the net project x is positive) for all discount rates r > 0, or
for all discount factors δ ∈ (0, 1), where δ = 1

1+r
and r > 0 with

NPVδ(x) =
T∑

t=0

δt · xt.

Definition 4 NPVδ(a) > NPVδ(b) for every constant discount function δ ∈ (0, 1) is
denoted as a ≻δ(0,1) b.

The δ TD conditions have been investigated in Foster and Mitra (2002) and
Karcher et al. (1995). By combining their results with what obtained earlier in
Proposition 1 we get the following novel result.

Theorem 2 a ≻∞ b if and only if a ≻δ(0,1) b.

Proof. The sufficiency of the theorem results from a ≻∞ b , that implies ∃ n s.t. a ≻n
b for all v ∈ Vn. Note that the standard exponential function, δ(t) = 1

(1+r)t
, belongs

to the set Vn for each n ∈ N∗. It follows that a ≻∞ b −→ a ≻δ(0,1) b.
For the necessity part, first we assume that a ≻δ(0,1) b. Then, the δ TD implies

that there ∃ n such that xn · Πn > 0 (see Theorem 5, Foster and Mitra, 2002), and
applying Proposition 1 we have that there exists a dominance of order n, hence a ≻n b.
Finally, subject to Remark 2, a ≻n b −→ a ≻∞ b.

Thus, robust time dominance ranking for all functions in V∞ coincides with dom-
inance for all constant discount rates.

It is clear that a ≻∞ b implies a ≻δ(0,1) b because all constant discount rate
NPV are in V∞, the relevance of the result is that this latter set of discount functions
is also sufficient to get dominance conditions that holds for all functions in V∞. This
result is analogous to the one that highlights for continuous variables the equivalence

3In general, a functione f(x) is completely monotone if it is positive valued and has derivatives
that alternate in sign with f ′ < 0, f ′′ > 0, and so on.
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between infinite stochastic dominance, completely monotone utility functions and
dominance in terms of Laplace transforms [Fishburn and Willig, 1984; Thistle, 1993
and Shaked and Shantikumar, 2006, Ch. 5].

We have used the restricted set V∞ as an alternative to the classic, constant dis-
count rate, considering also the time declining discount rates, but this does not appear
an adequate way of approaching the problem of ranking intertemporal projects. This
is so for at least two limitations. First, the theorem states that keeping this wide
subset of discount functions and requiring dominance for all of them, the ordering
result obtained does not add anything more to the ordering results obtained by using
just the conventional exponential function δ. Second, the present yields a dictatorship
over the future, so that policies that give benefits for the generations in the distant
future at the cost of those in the present are likely to be discarded even if benefits
are substantial.

The first result deserves some comments that are presented in next subsection,
while a possible solution to the second aspects will be derived in the following Section
3.2.

3.1.1 Aspects related to continuous time dominance

In order to parallel our result with those available for infinite stochastic dominance
and its equivalence with dominance for all the exponential discounting functions [or
Laplace Transform Dominance as in Shaked and Shantikumar, 2006, Ch. 5] we will
briefly transpose those results within our framework. As we will show, for comparisons
of discrete time streams, as is in our case, the existing results that are valid for
continuos time dominance cannot be applied directly.

As in Ekern (1981), the TD relations for continuous time comparisons are asso-
ciated with the NPV criterion over continuous net streams x(t) = a(t) − b(t) with
time weight v(t), thus

NPV c
v (x) =

∫ T
0

v(t) · x(t)dt, (2)

where the superscript c clarifies that the evaluation is made on continuous time. The
repeated cumulations of the net cash flows in discrete time are then replaced with
repeated integrations

Xn(t) :=
∫ t
0
Xn−1(s)ds,

where X0(t) := x(t), while the curvature restrictions for classifying the discounting
functions are represented by continuous derivatives that alternate in sign. In this
way, the successive differences,observed in discrete time, mimic the local derivatives
properties in the large. The subset V c

n is obtained in the same way, by adding suc-
cessive restrictions on vk(t), obtained, in this case, by differentiating v(t), k times,
i.e.

vk(t) =
dvk−1(t)

dt
.
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Let us denote with V c
n the set of discounting functions defined in continuous time, here

we will focus on strict dominance conditions by replicating the definitions presented
for discrete time evaluations.

Definition 5 NPV c
v (a) > NPV c

v (b) for all v ∈ V c
n is denoted as a ≻cn b.

While the continuous analogous of the nth order stochastic dominance is the fol-
lowing.

Definition 6 Project a strictly dominates b by the nth order continuous TD, denoted
by a >c

n b, if and only if for the net project x(t) = a(t)− b(t)

Xk(T ) ≥ 0 for all k = 1, 2, ..., n− 1,

Xn(t) ≥ 0 for all t ∈ [0, T ].

with strict inequality (>) holding for some comparisons.

As shown in Ekern (1981) a ≻cn b if and only if a >c
n b for all n ∈ N.

The continuous analogous of the infinite TD is denoted a ≻c
∞

b and coincides with
the fact that ∃ n ∈ N s.t. a ≻cn b.

The continuous exponential TD can be written as a ≻cs b if and only if

∫ T
0
exp(−st) · a(t)dt >

∫ T
0
exp(−st) · b(t)dt for all s > 0.

By readjusting results in Fishburn and Willig [1984, Lemma 1] and Shaked and
Shantikumar (2006, Ch. 5) one can derive the result a ≻c

∞
b ⇔ a ≻cs b, which is the

continuous analogous of Theorem 2.
However, it has to be pointed out that it is not the case that discrete TD and

continuous TD are equivalent. In fact, as shown in Fishburn and Lavalle (1995),
above the second degree of dominance the stochastic dominance relations for contin-
uous variables do not coincides with those for variables defined on a grid [i.e. on a
finite set of evenly spaced points]. By supplementing Fishburn and Lavalle (1995)
results with those in De La Cal and Cárcamo (2010) and exploiting analogies between
TD and inverse stochastic dominance one can derive the following implications for
comparisons between discrete and continuous time dominance.

Remark 3 If n = {1, 2} then a ≻n b ⇐⇒ a ≻cn b.
If n ≥ 3, with n ∈ N, then a ≻n b ⇒ a ≻cn b.

The first and second degree discrete TD relations are identical with their continu-
ous counterparts. The equivalence of the partial sums approach with the traditional
one, based on iterates of integrals of cumulative distribution functions fails from
the third degree beyond, and discrete TD conditions prove to be more demanding
then those defined in continuous time. So in principle we cannot use the continuous
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time results to derive the infinite dominance condition in discrete time. If fact, one
may expect that, in line with Remark 3, also a ≻c

∞
b is implied by a ≻∞ b and

given that a ≻cs b implies a ≻δ(0,1) b [by construction], then one can expect that
a ≻∞ b → a ≻c

∞
b ↔ a ≻cs b → a ≻δ(0,1) b, thus by transitivity a ≻∞ b → a ≻δ(0,1) b.

However, the result in Theorem 2 shows that this is not the case, the two domi-
nance conditions are equivalent thereby showing also that a ≻∞ b ↔ a ≻c

∞
b.

3.2 V α restricted time dominance

The result in Theorem 2 asks for a reconsideration of the type of restrictions to put
on the discounting function. Moving away from the successive restrictions scenario
we turn back to the first subclass of functions V ∗

1 , positively valued and decreasing in
time, thus those showing time impatience, and we introduce a parametric restrictions
in order to overcome the issue of dictatorship of the present.

To deal with these limitations, in line with Chichilnisky (1996), we formalize the
notion of Non Dictatorship of the Present (NDP ).

Dictatorship of the present occurs if irrespective of future net positive benefits
ωt = ω > 0 for any t ∈ {h + 1, . . . , T} there exists at least an admissible discount
functions v ∈ V ∗

1 such that if for h ∈ {0, 1, ..., T − 1}, xh < 0 and xt = 0 for all t ∈
{0, 1, . . . , h− 1} then NPVv(x) < 0 where x = (0, 0, ..., xh, ω, ω, . . . , ω). We consider
a weaker version of this condition requiring that h < H for some H ∈ {1, ..., T}, that
is the time period H denotes an upper bound beyond which future outcomes can be
considered irrelevant for the social evaluation.

Next axioms postulates that this is not the case: the Non Dictatorship of the
Present axiom does not allow a negative sign of the first net outcome to restrain
future benefits from having a word to say in the judgement of the policy as long as
some of these benefits take place no later than in period H. For a set VH ⊆ V ∗

1 of
discounting functions, that can be conditioned on the value of H, the social evaluation
NPVv(x) for v ∈ VH ⊆ V ∗

1 satisfies NDP if the following condition holds:

Axiom 1 (Non Dictatorship of the Present (NDP)) Let H ∈ {1, ..., T}. For
xh < 0, where h ∈ {1, 2, . . . , H − 1}, xt = 0 for all t ∈ {0, 1, ..., h − 1} and for
any v ∈ VH ⊆ V ∗

1 there exists ω > 0 with xt = ω, for all t ∈ {h + 1, . . . , T} s. t.
NPVv(x) ≥ 0.

The following is a direct implication of axiom NDP on the ranking induced by
NPVv(x) for v ∈ V ⊆ V ∗

1 .

Remark 4 NPVv(x) for v ∈ VH ⊆ V ∗

1 satisfies NDP if and only if there exists a
sequence αt ∈ [0, 1) for t ∈ {0, 1, ..., T} s.t. ∆t = vt − vt+1 ≤ αt with

∑H−1
t=0 αt < 1.

Proof. According to NDP vhxh +
(∑T

t=h+1 vt
)

ω ≥ 0 should hold for all v ∈ VH ⊆

V ∗

1 . If vh > 0, this is the case only if
(∑T

t=h+1 vt

)
> 0 where h < H. Recall that
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VH ⊆ V ∗

1 thus all vt are non increasing. Even if vt = 0 for all t > H the condition of
vH > 0 turns out to be necessary, but it is not sufficient. This aspect can be verified
because if h = H − 1, when vt = 0 for all t > H the NDP condition requires that
vH−1xH−1 + vHω ≥ 0, however, for given values vH−1 > 0, xH−1 < 0 and ω > 0
then for any vH ∈ (0,−vH−1xH−1/ω) we will get that NPVv(x) < 0. Thus it is not
sufficient to have a positive values of vH but it has also to be bounded above a positive
level.

In fact, for a given H ∈ {1, ..., T} a necessary and sufficient condition for NDP
to hold is that there exists a value βH > 0 such that vH ≥ βH > 0. Given that we
consider v ∈ VH ⊆ V ∗

1 then there exists a sequence of values βt > 0 with βt ≥ βt+1
for t ∈ {0, 1, . . . , H} such that vt ≥ βt > 0 for all t. Recalling that v0 = 1, and
that ∆t = vt − vt+1 ≥ 0 for all t, the condition can be rephrased as αt ∈ [0, 1) for
t ∈ {0, 1, ..., T} s.t. ∆t ≤ αt and

∑H−1
t=0 αt < 1.

In the remark it is simply required that the range of ∆t = vt − vt+1 is limited in
the interval [0, αt], where αt < 1 for each t, no further conditions are required for the
values of vt except those required by the fact that v ∈ V ∗

1 . Note that the condition∑H−1
t=0 αt < 1 implies that vH = 1−

∑H−1
t=0 ∆t ≥ 1−

∑H−1
t=0 αt > 0.

In what follows we consider dominance for NPV functions focusing on discounting
functions exhibiting a positive time preference v ∈ V ∗

1 that satisfy NDP . These
functions are parameterized by a common α ∈ [0, 1). Given that a necessary condition
for NDP is that vH > 0 for all admissible sets of discounting functions, then the choice
of α will implicitly allow to identify the more distant threshold time period H. In fact,
it should be that if ∆t = α for all t ∈ {0, 1, . . . ,H − 1} we get vH = 1−

∑H−1
t=0 ∆t =

1 − H · α > 0, thus implying that 1/α > H. It follows that given α ∈ [0, 1) we get
that the largest admissible value for H is H = Int(1/α) if 1/α �= Int(1/α) where the
operator Int(x) selects the integer component of x, otherwise H = 1/α− 1.

Let α ∈ [0, 1), then

V α
1 := {v ∈ V ∗

1 s.t. ∆t = vt − vt+1 ≤ α}.

The parameter α can be interpreted as a magnitude restrictions on the fall of the
discount function.

Note that dominance for all v ∈ V α
1 is implied by dominance in terms of NPV

for all v ∈ V ∗

1 that satisfy NDP .
Accordingly the dominance condition is the following:

Definition 7 NPVv(a) ≥ NPVv(b) for all v ∈ V α
1 is denoted as a �α1 b.

In order to derive the associated TD conditions we make use of the curve GX1∗(t).
The curve is obtained through the application of a double process of cumulation.
First, net benefits are cumulated across time using the exogenous order of time and
obtaining the values X1

t for t = {0, 1, . . . , T}. Then these values are censored at the
value of X1

T , thereby obtaining X1∗
t := min{X1

t , X
1
T}. At the second stage the values

of X1∗
t are ranked in non decreasing order leading to the distribution X1∗

[t] .
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To conclude, these values are then cumulated leading to

GX1∗(t) :=
t∑

τ=0

X1∗
[τ ] (3)

for t = 0, 1, ..., T. The function can be extended to any value of t > T, by adding
(t − T ) terms X1

T = X1∗
[T ], that is, by evaluating it over an expanded stream of net

benefits obtained adding a sequence of 0’s to all periods after T . Thus we obtain,

GX1∗(t) :=
T∑

τ=0

X1∗
[τ ] + (t− T ) ·X1

T

for t > T.While in general the linear interpolation of the curve gives for t∗ = Int(θ)
the formula

GX1∗(θ) = (θ − t∗) ·X1
t∗+1 +GX1∗(t∗). (4)

The result in next theorem clarifies that in order to get a non negative net present
value NPVv(x) ≥ 0 for all v ∈ V α

1 the value GX1∗( 1
α
− 1) must be non negative.

Theorem 3 For α ∈ (0, 1) then a �α1 b if and only if GX1∗

(
1
α
− 1
)
≥ 0.

If α = 0 then a �01 b if and only if X1
T ≥ 0.

Proof. Recall that a >α
1 b requires that NPVv(x) =

∑T
t=0 vt · xt ≥ 0 for all v ∈ V α

1 .
These discounting functions satisfy the conditions (i) ∆t = vt − vt+1 ≥ 0 for all
t ∈ {0, 1, . . . , T} with vT+1 = 0, and (ii)∆t ≤ α. Writing vT = ∆T , vT−1 = ∆T+∆T−1
and in general vt =

∑T
k=t∆k we can therefore rewrite

NPVv(x) =
T∑

t=0

[
T∑

k=t

∆k

]
· xt

= ∆T ·
T∑

t=0

xt +∆T−1 ·
T−1∑

t=0

xt + . . .+∆1 ·
1∑

t=0

xt +∆0 · x0.

Denoting X1
T :=

∑T
t=0 xt and substituting, we obtain

NPVv(x) = ∆T ·X
1
T +∆T−1 ·X

1
T−1 +∆T−2 ·X

1
T−2 + . . .+∆0 ·X

1
0

=
T∑

t=0

∆t ·X
1
t .

Recall that we need to check that NPVv(x) =
∑T

t=0∆t ·X
1
t ≥ 0 for all ∆t ≥ 0 such

that {
∆t ∈ [0, α] for t ∈ {0, 1, . . . , T − 1}
v0 = ∆T +∆T−1 +∆T−2 + . . .+∆1 +∆0 = 1,

(5)

and that X1
t is obtained cumulating net cashflows, thus can also be negative.

Looking at the expression developed for the NPV and considering the (5) we
note that it is like having a probability distribution where the ∆′s are the weights
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and the NPV has the shape of an expected value. What would be the worst case
scenario in which the NPV would have a negative sign? Of course this can happen
when the highest weights are associated to the "most" negative summation of cash
flows. Keeping this idea in mind one might find helpful to rank the values of X1

t s in
a non decreasing order, more or less like the principle that stays behind the Inverse
Cumulative Distribution Function.

Necessity part. Rank the values of X1
t ’s in non decreasing order, leading to the

distribution X1
[t] for t ∈ {0, 1, . . . , T} with

X1
[0] ≤ X1

[1] ≤ X1
[2] ≤ . . . ≤ X1

[T ]. (6)

Note that if ∆t = 0 for all t ∈ {0, 1, . . . , T − 1} then every period receives the same
weight equal to 1, v0 = v1 = · · · = vT = 1, it follows that the necessary conditions
for having dominance is that the cumulated sum of the initial net cash flows to the
horizon, must be non negative X1

T ≥ 0. This necessary condition holds irrespective
of the value of α for any set V α

1 .
Assigning positive weights to the cumulated sums with higher values than X1

T

increases the value of the NPV . However such configurations would not lead to
the worst case scenario for the NPV dominance to check for deriving necessary
conditions. In fact, by extending the time horizon by a string of 0’s of appropriate
length, will coincide with integrating the sequence (6) with terms of valuesX1

T without
affecting the NPV of the net project. Thus for the derivation of necessary conditions
all values of X1

t larger than X1
T should not be considered. Henceforth, the next step

is to censure all the reordered cumulative values at the value of X1
T ,thereby obtaining

X1∗
[t] = min{X

1
[t], X

1
T}. In this way, in the sequence (6) the X1

T receives all the weight

that remains from the value of 1 after deducting the weights of the X1
[t] located before

it.
Now we need to check when the NPV of these censored, rank dependent cumula-

tive cash flows is non negative. For this purpose, the reordered values are cumulated
again, introducing the following function

GX1∗(t) :=
t∑

τ=0

X1∗
[τ ]

for t = 0, 1, . . . , T.
We are interested in the configuration leading to the lowest possible NPV , thus

the smallest X1∗
[t] ’s in the sequence have to receive the highest possible weight α.

These weights have to satisfy condition (5), therefore if the first t∗ + 1 elements in
the sequence receive the maximum weight α, the next one gets the remaining weight
[1− α(t∗ + 1)].

Now, if αT ≥ 1, then by denoting with t∗ = Int(θ), where θ = ( 1
α
−1),with t∗ ∈ N
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and the function

NPVv(x) = α ·
(
X1∗
[0] +X1∗

[1] + . . .+X1∗
[t∗]

)
+ [1− α(t∗ + 1)] ·X1∗

[t∗+1] ≥ 0

NPVv(x) = α ·

[
X1∗
[0] +X1∗

[1] + . . .+X1∗
[t∗] + (

1

α
− t∗ − 1) ·X1∗

[t∗+1]

]
≥ 0

we get
NPVv(x) = α ·GX1∗(θ) (7)

where
GX1∗(θ) = (θ − t∗) ·X1

t∗+1 +GX1∗(t∗).

If α · T < 1 then the necessary condition requires that

NPVv(x) = α ·
(
X1∗
[0] +X1∗

[1] + . . .+X1∗
[T−1]

)
+ (1− αT ) ·X1∗

[T ] ≥ 0

where by construction X1∗
[T ] = X1

[T ]. The condition can be rewritten by adding further

elements X1∗
[T ] to the sequence of cumulated values, i.e. adding 0’s to the original

string of net values, thereby re-obtaining

NPVv(x) = α ·

[
X1∗
[0] +X1∗

[1] + . . .+X1∗
[t]∗ + (

1

α
− t∗ − 1) ·X1∗

[t∗+1]

]
≥ 0.

The necessity condition thus requires that GX1∗( 1
α
− 1) ≥ 0.

Sufficiency part. If α ∈ (0, 1) then by construction the NPV in (7), is the lowest
among all possible NPV for all v ∈ V α

1 . For a given distribution of values of X1
t for

t = 0, 1, . . . , T, any other admissible distribution of values of ∆t won’t decrease the
NPV. It follows that if GX1∗( 1

α
− 1) ≥ 0 then NPVv(x) ≥ 0 for all v ∈ V α

1 .
If α = 0 then NPVv(x) = X1

T .
It is worth mentioning that when α = 0, that is when every period receives the

same weight equal to 1, then v0 = v1 = · · · = vT = 1. Thus, having a non negative sign
of the cumulative cash flows at the horizon T, that is X1

T ≥ 0, becomes a necessary
condition in order for one to choose project a over b.

When α → 1, the period 0 will be the only one receiving importance since all the
future periods starting from t = {1, 2, . . . , T} will be discounted at values tending to
zero. Therefore, GX1∗(0) ≥ 0 becomes a necessary condition, implying that X1∗

[0] ≥ 0 .

Remember that by definition we have 0 ≤ X1∗
[0] ≤ X1∗

t ≤ X1
t for all t, and therefore X1∗

[0]

≥ 0, by construction, implies X1
t ≥ 0 for all t, condition also required by a >1 b.

Furthermore, if two projects do not verify the conditions for presenting 1st order
TD, the cumulated cashflows at the horizon represents a necessary condition, indi-
cating when we can find a 1st order α − TD. This criterion has a common flavor
with the 1st order Almost Stochastic Dominance criterion, a relaxation of the Sto-
chastic Dominance concept that considers parametric restrictions of the set of utility
functions based on the maximal ratio between marginal utilities at two different re-
alizations within the domain [see Leshno and Levy, 2002]. The α − TD criterion
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considers instead a restriction on the absolute magnitude of the "marginal" change
of the discount function between two adjacent periods. We can focus on absolute
magnitudes because we apply a natural normalization of the discounting function by
setting v0 = 1. Nevertheless, even if the two criteria follow a similar approach the set
of restrictions considered are logically distinct.

TheGX1∗(t) function, produces a "verification criterion" for dominance of prospect
a over b, in the sense that after α is specified, if the value of the function in ( 1

α
− 1)

is non negative, then so is the net present value NPVv(x). The next example clarifies
the construction of the criterion.

Example 3 Consider the following problem, where xt = at − bt, is the net cash flow
for all t = {0, 1, 2, . . . , 8}

t 0 1 2 3 4 5 6 7 8
xt -1 -2 3 3 -2 4 3 -2 -4

X1
t -1 -3 0 3 1 5 8 6 2

X1
[t] -3 -1 0 1 2 3 5 6 8

X1∗
[t] -3 -1 0 1 2 2 2 2 2

GX1∗(t) -3 -4 -4 -3 -1 1 3 5 7

note that GX1∗(4.5) = 0 thus NPVv(x) ≥ 0 if and only if 1
α
− 1 ≥ 4.5 that is

1
5.5
= 0.1818 ≥ α∗. Starting from the cut-off point α∗ for which the function G is

positive, the NPVv(x) will also be positive. In order to have dominance for all the
functions in V ∗

1 the fall from period to period in the discount functions cannot be
higher than the upper bound α∗ = 0.18.

This is to say that whenever we are dealing with a α higher that the cut-off point
α∗we cannot find dominance of a project a over another one b.

It is of immediate verification the fact that as α decreases the dominance condition
becomes less demanding.

Remark 5 Let α′ < α then a �α1 b → a �α
′

1 b.

Consider the following example, in order to illustrate Remark 5.

Example 4 Let T = 6, and the net cash flows xt = at− bt, for t = {0, 1, 2, . . . , 6} be
represented in the table below

t 0 1 2 3 4 5 6
xt -2 2 2 2 2 2 -9

X1
t -2 0 2 4 6 8 -1

X1
[t] -2 -1 0 2 4 6 8

X1∗
[t] -2 -1 -1 -1 -1 -1 -1

GX1∗(t) -2 -3 -4 -5 -6 -7 -8
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In this example, a will never �α1 b given that the verification function GX1∗(t) will
be always negative for every t = {0, 1, 2, . . . , T}. On the other hand, for any α ≤ 0.04,
b �α1 a.

The α−TD criterion will solve comparisons when 1st order TD cannot be applied,
in particular the sign of the non-discounted sum of net outcomes X1

T will play a crucial
role to obtain α− TD dominance.

Remark 6 When there is no 1storder TD, i.e., when neither a >1 b nor b >1 a, then

(i) if X1
T ≥ 0 then ∃α s.t. a �α1 b

(ii) if X1
T ≤ 0 then ∃α s.t. b �α1 a

.

An implication of the remark is that one can not arrive to a disagreement point
according to the α − TD criterion, that is, it is not possible that there exists an
α for which a �α1 b, and another α′ for which b �α

′

1 a. This feature will prove to be
particularly relevant in next discussion.

There are clear links between our results and the literature on internal rates of
return (IRR), both of them returning a value for which the net project has zero
present value. However, one must keep in mind several important distinctions. In
the IRR case, a rate of discount is obtained, that can be used as a cut-off between
the range of discount rates that select one project and the range of rates that select
the other, meanwhile in the case of α− TD criterion we get a magnitude restrictions
on the fall of the discounting function. The former criterion can result in multiple
IRR (when the sign of the net cash flow changes more than once during the project’s
life) for which the NPV equals 0 and therefore, the ranking can be reversed when
choosing among them, whereas as shown in Remark 6 the α − TD criterion gives
an unique value for which one project dominates another. Finally, the parameter
α can be found for a large class of discounting functions, in our case for all those
non-negative and non-increasing with time, whereas the IRR is often computed only
for exponential discount function.

4 Conclusions

Is the TD approach suitable when facing sustainable intertemporal evaluations?
The TD structure can be adapted in order to include more functions than the

unsatisfactory exponential discounting in assessing long term projects, but at the
same time, even when going beyond the classical discount structure, as shown in
Theorem 2, the ordering results are equivalent to the ones obtained in the standard
case. We argue that, without any further (parametric) restrictions to the class of
discounting function, the TD framework continues to give prevalent weight to the
present in ranking streams of cash flows in terms of higher NPV . This result called for
a method to control the problem of the dictatorship of the present. We have suggested
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the α−restricted TD for discounting functions that exhibit time impatience, where α
can be interpreted as a magnitude restrictions on the fall of the intertemporal weight.
This approach gives a verification criteria, the GX1∗(t) function, for evaluating the
long run projects, a criteria that makes explicit the trade-off between current and
future periods.
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