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Abstract 
 

In California, where the majority of oak woodlands are privately owned, local policymakers 
must make conservation decisions under uncertainty over future vegetative cover due to climate 
change.  This paper develops a spatial-dynamic model of a municipality in order to analyze three 
alternative land use policies (urban growth boundaries, location-independent development fees, 
and location-dependent development fees) when policy makers account for or ignore the 
potential for future climatic information.  Climate change is modeled as future land use 
externalities taking one of two possible states, which correspond to oak woodland services 
thriving or degenerating over time.  Using this model, I derive the privately and socially optimal 
land allocations under open-loop and closed-loop control assumptions.  By comparing the 
privately and socially optimal land allocations in each control problem, I identify the optimal 
trajectory of each policy instrument over time.  While urban growth boundaries and location-
independent development fees differ between the two control problems, location-dependent 
development fees are robust to the type of control problem when there are no cumulative 
environmental externalities from urban development.  As a consequence, location-dependent 
development fees achieve the socially optimal outcome even if policymakers fail to account for 
the future availability of information about the effects of climate change when determining 
current land use policy. 
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Optimal Preservation of Oak Woodlands within a Municipality 
  
I. Introduction 
 
California’s 5 million acres of oak woodlands and the amenities that they provide (wildlife 
habitat, water supply services, soil enhancement services, carbon sequestration, aesthetic value, 
existence value, and recreation) are currently under threat from agricultural and residential 
development and the potential effects of climate change.  Scientists predict that oak habitats will 
shrink and move north and upslope over the next century due to global warming (Kueppers et al., 
2005; Hannah et al., 2008).  However, the predicted future locations of oak habitat vary 
depending on the climate model, the future scenario, and the species distribution model.  As a 
result, policymakers must make conservation decisions under substantial scientific uncertainty 
over future amenity service values.  Because 80% of California’s oak woodlands are privately 
owned and the state does not have regulatory authority over the removal of oak trees on private 
lands (WCB, 2007; Ineich, 2007), it falls to local governments to adjust existing land use policies 
to account for the uncertainty surrounding the future amenity benefits from California’s oak 
woodlands (Ineich, 2007; Campos-Palacin et al., 2002). 
 
The primary objective of this research is to show how uncertainty over future amenities affects a 
local government’s social welfare-maximizing land use policies.  I develop a spatial-dynamic 
model of a municipality in order to analyze three alternative land use policies: urban growth 
boundaries, location-independent development fees, and location-dependent development fees.  
A modified open-city model, which consists of a municipality and its “sphere of influence,” 
represents the spatial component of the problem, two time periods, uncertainty, and 
irreversibility, represent the dynamic components.  Using this model, I derive the privately and 
socially optimal land allocations under open-loop and closed-loop control assumptions.  In the 
open-loop control problem, policymakers cannot respond to new information, while in a closed-
loop control problem they can.  Equivalently, in an open-loop control problem the level of 
uncertainty remains constant, while in a closed-loop control problem it declines.  By comparing 
the privately and socially optimal land allocations in each control problem, I identify the optimal 
trajectory of each policy instrument over time.  By comparing the socially optimal land 
allocations in the two control problems, I identify the value of information that policymakers can 
obtain by responding to new information.   
 
In the context of oak woodlands preservation, the closed-loop control problem represents 
informational conditions in the real world: policymakers and other economic agents will learn 
over time about the effects of climate change on oak woodlands and the associated value of non-
market services.  The open-loop control problem represents the certainty-equivalent problem in 
which policymakers cannot (or do not) respond to new information.  The reduction of the 
existing uncertainty over the effects of climate change on vegetation over time, and the 
irreversibility of urban development result in an additional conservation value, known as option 
value.  If, as many observers believe, current land use policies do not take the potential effects of 
climate change on vegetation into account, then an implication of my analysis is that existing 
land-use policies should be adjusted to preserve more oak woodlands than they aim to achieve 
currently. 
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I obtain four major results.  First, the socially optimal land use policies prevent more oak 
woodland development in the first period under closed-loop control than under open-loop control 
when there is no cumulative environmental externality from urban development and the marginal 
external cost of development increases in the amount of urban land at a non-decreasing rate.  
Second, the socially optimal urban growth boundaries and location-independent development 
fees differ between the two control problems.  While the socially optimal first-period urban 
growth boundary is larger in magnitude under open-loop control than under closed-loop control 
and the relative magnitudes of the socially optimal location-independent development fees under 
open-loop and closed-loop control are indeterminate, both socially optimal open-loop policies 
under-conserve oak woodland relative to the corresponding socially optimal closed-loop policies 
when there is no cumulative environmental externality from development.  Third, the socially 
optimal location-dependent development fees are the same at each location for the two control 
problems when there is no cumulative environmental externality from development.  This result 
implies that the location-dependent development fees are robust to the type of control problem 
when there is no cumulative environmental externality from development.  Because many 
policymakers ignore the uncertainty over the future value of oak woodland amenities and 
uncertainty is likely to decline gradually and at an unknown rate, these results indicate that 
location-dependent development fees are likely to be a better suited policy for ensuring a socially 
optimal level of oak woodland conservation when there is no cumulative environmental 
externality from development.  For example, location-dependent development fees achieve the 
socially optimal land use allocation when there is no cumulative environmental externality from 
development and the policymaker gains unexpected information about the effect of climate 
change after making her first period land use decision, i.e. an open-loop feedback control 
problem, while urban growth boundaries under-conserve oak woodland.  Last, though under 
some conditions the socially optimal land use policies continue to prevent more oak woodland 
development in the first period under closed-loop control than under open-loop control when 
there is a cumulative environmental externality from development, the socially optimal location-
dependent development fees are no longer independent of the type of control problem. 
 
These results apply to any spatial-temporal problem in which private landowners choose between 
land uses that produce externalities with uncertain future values and irreversible land-uses.  The 
results extend to all local conservation programs, including agricultural preservation programs, 
which aim to preserve particular land-uses on private lands with uncertain future social values 
due to the potential effects of climate change, disease, and/or regeneration problems.  The results 
also apply to the discouragement of land-uses that produce negative externalities.  For instance, 
policymakers who aim to reduce mining by replacing it with residential development or 
permanent nature reserves may restrict this activity excessively if they do not take into account 
the uncertainty surrounding future clean technologies. 
 
This work also has broader implications for ecosystem conservation.  First, the results of this 
paper indicate that the conservation of vegetation potentially affected by climate change should 
increase.  If public acquisition of private lands is one of the primary methods of accomplishing 
this goal, the amount acquired should increase to account for the uncertainty surrounding the 
effects of climate change.    Second, current methods that rank land conservation choices for land 
and development right purchases in order to maximize the expected benefits of a conservation 
budget should be adjusted to account for the value of information.  Current conservation 
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targeting methods do not take into account the potential for vegetative, and thus ecosystem, 
movement.  The government and private land trusts must be willing to return these lands to the 
private domain if an effort to conserve a specific ecosystem is unsuccessful, due to climate 
change or other factors eliminating the targeted vegetation, because then their economic value is 
larger for urban use than for conservation.  Otherwise, no information value arises, due to the 
irreversibility of conservation, which eliminates the value of conserving ecosystems for future 
flexible land use choices. 
 
The paper is structured as follows.  Section II gives an overview of oak woodlands and the issues 
surrounding their preservation in California.  Section III reviews the key literature.  Section IV 
introduces the general model.  Section V specifies the various landlord and social planner 
problems that are to be solved.   Section VI derives the conditions defining equilibrium for each 
of these problems.  Section VII derives the sufficient conditions for a unique global maximum 
for each of these problems.  Section VIII derives the key results of the paper and discusses their 
implication.   Section IX concludes with a discussion on the greater implications of these results 
and the direction of future work.  
 
II. Oak Woodlands in California 
 
 There are 9.8 million acres of oak habitat (oak woodland and forest) in California, covering 
about one-tenth of the state’s land area (FRAP, 2003).  Approximately 53% of this oak habitat is 
oak woodlands, while the remaining 47% is oak forests.  Oak forests are denser, less dominated 
by oaks, and at higher elevations than oak woodlands, and receive more rainfall (Gaman and 
Firman, 2006); oaks are not the dominant species in oak forests as they are in oak woodlands.  
The majority of oak woodlands are in the Central Valley (Sacramento and San Joaquin Valleys), 
while oak forests are most common in the North Coast and Northern Interior regions (Gaman 
and Firman, 2006). 
 
There are eight major species of oaks trees native to mainland California (black, blue, canyon-
live, coastal live, Engelmann, Oregon white, interior live, valley), of which only blue and valley 
oaks are exclusive to California (Giusti and Pamela, 1993).  There are also shrub and island 
species of oaks, as well as natural hybrids (UCCE, 2009; Giusti and Pamela, 1993).  Blue oaks 
are approximately a third of California oaks, while canyon, coast, and interior live oak species 
account for another third (Gaman and Firman, 2006; FRAP, 2003). 
 
80% of all California oak woodlands are privately owned, and 70% are used for grazing.  56% 
are owned by livestock producers and another 14% of oak woodlands are leased to ranchers by 
private landowners and the federal government (Campos-Palacin et al., 2002; Ineich, 2005).  
Because oak is classified as a hardwood, oak woodlands used primarily for grazing are 
economically categorized as hardwood rangelands.  In addition to grazing, owners of oak 
woodlands can supplement their income by renting their land to hunters and cutting timber for 
firewood (Ineich, 2005). 
 
In addition to being an input into various economic activities, California’s oaks provide 
numerous non-market services to private landowners, nearby residents, and society.  Landowners 
benefit from recreational and soil enhancement services.  For example, blue oaks improve soil 
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fertility underneath their canopy (Dalhgren et al., 2003).  Landowners and nearby residents 
benefit from the aesthetics of oak woodlands.  In terms of water supply services, oaks decrease 
nutrient runoff and help mitigate leaching (Ineich, 2005).  Oaks also sequester large amounts of 
carbon (Camping et al, 2002).  Landowners, nearby residents, and society all benefit from the 
unique habitat that California oaks provide “170 birds, 80 mammals, and 60 species of 
amphibians and reptiles” (UCCE, 2009).  20% of these species feed on acorns that oaks produce 
and a majority eats some of the 5,000 species of insects and arachnids that live on or around oaks 
(UCCE, 2009).  California oak habitat supports several endangered species, including the 
California spotted owl (Ineich, 2005).  Because over 300 animals rely on oak woodland services, 
California oaks are the most important natural resource in the state in terms of support of 
biological diversity (Ineich, 2005).  Finally, landowners, nearby residents, and society benefit 
from any existence value that they place on oak habitat that is not already captured in the 
benefits discussed earlier. 
 
Because oak woodlands suffer from increasing development pressures, their non-market services 
are increasingly at risk of disappearing.  In recent years, the urban conversion of California oak 
woodlands has reached an annual rate of 30,000 acres (Ineich, 2005).  Gaman and Firman (2006) 
found that 1 million acres of oaks statewide were already developed and an additional 750,000 
acres of oak woodland will be developed by 2040.1

 

  Housing (urban and rural residential) and 
vineyard development will continue to drive this loss of oak woodland (Campos-Palacin et al., 
2002).  Of all California regions, the Central Valley is under the greatest pressure.  Of the 20% 
of Sacramento Valley’s land area that is oak woodlands, one-sixth is already developed and 
Gaman and Firman (2006) predict another one-sixth will be developed by 2040.  Although urban 
pressures are less in the San Joaquin Valley, its population is projected to increase substantially 
over the next 30 years.  Of the 10% of San Joaquin Valley’s land area that is oak woodlands, 
one-tenth is already developed and another one-tenth is at a high risk of development by 2040 
(Gaman and Firman, 2006). 

There is little state-level protection of oaks within California.  Because of the non-commercial 
nature of most California oaks, the California Department of Forestry has little regulatory 
authority over their removal on private lands (WCB, 2007; Ineich, 2007).  The California Forest 
Practice Act (FPA) provides protection only to commercial forests, and thus only applies to a 
minority of California oaks (IHRMP, 2000).  Though pure stands of blue and valley oaks are not 
covered by the FPA, commercial hardwood forests, such as Montane hardwood forests, are 
covered (IHRMP, 2000); Montane hardwood forests often include canyon live, valley live, 
California black, and Oregon white oaks (IHRMP, 2000).   
 
The Williamson Act Program, also known as the California Land Conservation Act (LCA) 
Program, is a state supported voluntary agricultural preservation program that offers farmers and 
ranchers lower property taxes in exchange for a contract that restricts their land use to 
agricultural or open-space purposes.  Though 70% of oak woodlands are enrolled under the 
Williamson Act, this only provides temporary protection; landowner initiated non-renewal takes 
only nine years to complete (Campos-Palacin et al., 2002; CDC, 2007).  In addition, the state is 

                                                           
1 Gaman and Firman (2006) define developed as thirty-two or more housing units per square mile.  This is 
equivalent to defining developed as twenty acres or less per lot.  For larger properties within this “developed” 
designation, there is not necessarily a huge amount of habitat destruction    
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currently not reimbursing counties for the tax revenue that they lose under the Williamson Act 
due to the current budget crisis.  As a result, Imperial County in Southern California already has 
opted out of the Williamson Act, and it is possible that more counties will follow.  The possible 
elimination of the Williamson Act further erodes state-protection of oak woodlands (Cornett, 
2010). 
 
The primary protection of California oak woodland is provided by county and municipality 
governments.  The main methods of protection are tree cutting ordinances, zoning restrictions, 
urban growth boundaries, cluster development requirements, and voluntary guidelines (Ineich, 
2007; Campos-Palacin et al., 2002).  Though not specifically used to protect vegetation such as 
oaks, development fees are common in cities and counties throughout California (CHCD, 2009). 
Local governments purchase properties or their development rights for conservation purposes, as 
do private land trusts. 
 
Development pressures are compounded by climate change, disease pressures, and the failure of 
some oaks to regenerate.  Using a regional climate model (RCM), Kueppers et al. (2005) predicts 
that global warming will cause California Blue and Valley Oak habitats to shrink in size by 41% 
and 46%, and move north and upslope over the next century.  According to the RCM, less than 
50% of currently protected oak land areas will contain these species in 2100.  Thus, conservation 
of traditional oak properties will not ensure the conservation of oak habitats in the future.  
Though these predictions are alarming, there is considerable uncertainty surrounding them.  
There are a multitude of climate models with different assumptions and scales of analysis, each 
producing different climate and habitat predictions.  For instance, Kueppers et al. (2005) also 
utilize a global climate model (GCM) to predict a shrinking of California Blue and Valley Oak 
habitats by 19% and 27% by 2100.  However, these uncertainties will decrease over time.  Model 
fit and accuracy will improve as more climate and vegetation data becomes available and as 
more complex models are developed. 
 
This uncertainty over the future amenity values of local California oaks caused by climate 
change is heightened by disease and regeneration problems.  California oaks are susceptible to 
Phytophora ramorum, the organism that causes sudden oak death, a disease responsible for 
widespread diebacks of several oak species in the coastal ranges of California.  Sudden oak death 
has no known method of control (COMF, 2004; UCIPM, 2002).  In addition to mortality, sudden 
oak death decreases the aesthetic value of infected trees by affecting their foliage and branches.  
Some species of oaks (blue, Engelmann, and valley) are also suffering from regeneration 
problems where the oak recruitment rate, the number of oaks reaching adulthood, is less than the 
mortality rate (Giusti and Pamela, 1993).  Recruitment is entirely absent in some areas, although 
even within a region there is great variety across sites (Campos-Palacin et al., 2002). 
 
III. Literature Review 
 
To the author’s knowledge, no previous work has addressed how a local government’s social 
welfare-maximizing land use policies are affected by uncertainty over future amenities.  Three 
strands of literature form a sound starting point: farmland preservation, non-market valuation, 
and irreversible investment.  The agricultural preservation literature provides the basic argument 
for the public support of land-use conservation on private lands.  The non-market valuation 
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literature regarding oak woodland provides empirical justification for extending this public 
support to this ecosystem.  The irreversible investment literature develops the modeling 
framework for irreversible decision making under uncertainty, upon which this paper will 
expand.  Though the subsequent quasi-option value literature and irreversibility effect literature 
explicitly explore the effects of uncertainty on irreversible land-use decisions, both focus on 
public lands.  As a consequence, the effect of uncertainty on irreversible private land-use 
decisions and the land use policies that regulate these decisions has not been explored.  Nor has 
the irreversible investment framework been integrated into a continuous spatial model, such as 
the Muth-Mills model.  My paper fills these two niches by integrating the irreversible investment 
decision making framework into an open-city model to explore the effects of uncertainty on 
social welfare maximizing land-use policies.  The most similar works in the literature are Albers 
(1996) and Albers and Robison (2007).  These papers integrate the irreversible investment 
framework into a discrete spatial model in order to explore temporal-spatial aspects of park 
management. 
 
Agricultural preservation and non-market valuation. Beginning with Gardner (1977), the 
agricultural preservation literature has recognized that open space, environmental amenities and 
other rural amenities provided by agricultural land are public goods, and thus constitute an 
argument for agricultural preservation.  Two papers in the non-market valuation literature 
address the external benefit of oak woodland conservation programs to surrounding 
communities.  Standiford and Scott (2001) analyze the effects of distance to the nearest stand of 
oaks and distance from an 8,300 acre oak woodland conservancy on housing and land prices in 
southern Riverside County using a hedonic housing price model.  The authors find that “a 
decrease of 10 percent in the distance to the nearest oak stands and to the edge of the permanent 
open space land results” in increases of $4 million and $16 million in total home and land values 
in the community, respectively.  Thompson, Noel, and Cross (2002) use contingent valuation to 
estimate San Louis Obispo County voters’ willingness to pay for oak woodland.  The authors 
find that county voters would be willing to allocate $12 million for the provision of conservation 
easements. 
   
Irreversible investment and quasi-option value. Neither the agricultural preservation literature 
nor the non-market valuation studies capture the full benefit of conservation due to their implicit 
assumption that the benefits of conservation are known.  In practice, the non-market benefits of 
agricultural land, including oak rangeland, are often uncertain.  This uncertainty arises from 
various sources.  In my context, the most important source is global climate change.  This 
uncertainty is likely to decrease over time as scientists learn more about the regional effects of 
global climate change.  Because learning allows decision makers to make more informed 
decisions, there is a value to this information conditional on preservation.  This value is known 
as option value in the discrete development literature.   
 
In discrete development problems where decision makers choose whether or not to develop an 
entire area, the Dixit-Pindyck (D-P) option value is a consequence of this uncertainty, the flow of 
information over time that reduces it, and the irreversibility of urban development.  The D-P 
value is made up of two values: quasi-option value, which is the expected value of information 
conditional on preserving undeveloped land in the current time period, and a second value, which 
is the value of waiting to develop due to a lower expected future cost of development.  If a social 
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welfare maximizing policymaker ignores the reduction over time of the uncertainty surrounding 
the net benefits to land development/preservation, Arrow and Fisher (1976) argue that quasi-
option value is equivalent to the optimal development tax necessary to induce the policymaker to 
choose the socially optimal discrete development decision.  I focus exclusively on quasi-option 
value, and assume that development is costless. 
 
Because the literature based on Arrow and Fisher (1976) focuses on irreversible development 
decisions on public lands by a social planner, quasi-option values as traditionally defined do not 
apply to privately owned farmland.  Due to the public good nature of agricultural amenities, 
landowners do not fully account for their land’s amenity values or the corresponding quasi-
option value that arises from preserving agricultural land when making their land use decisions.  
As a consequence, social welfare-maximizing land use policies must take into account the 
portions of quasi-option value and amenity values that landlords ignore when making their land 
use decisions. 
 
Irreversibility Effect.  The irreversibility effect literature extends the results of Arrow and Fisher 
(1976) to continuous irreversible development decisions made by a social planner.  Epstein 
(1980) proves that the irreversibility effect, which in my context corresponds to first period 
development declining as more information becomes available in the future, does not always 
hold.  Epstein (1980), and two additional articles, Ulph and Ulph (1997) and Freixas and Laffont 
(1984), define sufficient conditions for the irreversibility effect to hold in two-period 
development problems.  The Epstein (1980) sufficient conditions are that the benefit functions 
and the irreversibility constraints are concave with respect to the decision variables and that the 
derivative of the second period value function with respect to the amount of urban land in the 
first period is concave with respect to the posterior probabilities.  The Ulph and Ulph (1997) 
sufficient condition is that the irreversibility constraint binds in the open-loop problem.  Note 
that the Epstein (1980) and Ulph and Ulph (1997) sufficient conditions are neither mutually 
exclusive nor is one a subset of the other.  The Freixas and Laffont (1984) sufficient conditions 
are that the value function is quasi-concave and that the first and second period benefit functions 
are separable in their decision variables.  In other words, the cumulative effect of first period 
development on second period benefits is certain.  Hanemann (1989) notes that the Epstein 
(1980) sufficient conditions are guaranteed to hold if in addition to the Freixas and Laffont 
(1984) conditions the value function is assumed to be concave.  
 
Hanemann (1989) also demonstrates that quasi-option value defined by Arrow and Fisher (1976) 
does not exist in the continuous choice case, although there is still a value of information 
conditional on the first period land use decision.  As in discrete development problems, a 
landowner does not fully account for her land’s amenity value or the corresponding value of 
information that arises from preserving agricultural land when making her land use decision.  As 
a consequence, I define two values of information in this paper: the social value of information 
and the private value of information.  The social value of information is the value of information 
that arises in the closed-loop Pareto efficient equilibrium, which will be referred to as the closed-
loop social planner problem in this paper.  The private value of information is the value of 
information that arises in the closed-loop competitive equilibrium, which will be referred to as 
the closed-loop landlord problem in this paper.  Because information has no value in the open-
loop social planner and landlord problems, the social (private) value of information is calculated 
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as the difference between the closed-loop and open-loop value functions in the social planner 
(landlord) optimization problems (Hanemann, 1989).  The private value of information is the 
portion of the social value of information that landlords as a group take into account when 
making their land use decisions in the closed-loop landlord profit-maximization problem.  
Because the public good nature of oak rangelands’ amenities implies that the private and social 
values of information may differ if the irreversibility effect holds, social welfare-maximizing 
land use policies must account for any such difference. 
 
The Muth-Mills model.  In order to analyze the effects of uncertainty regarding the future non-
market benefits of oak woodland on private and socially optimal land use choices, the key 
assumptions and structure of the irreversible development literature are integrated into a spatial 
model similar to the Muth-Mills model.  In this literature, cities are often measured as a radially 
symmetric city on a two-dimensional plane with a Central Business District (CBD) at the center 
of the city in which all residents of the city work.  The assumption that the city is radially 
symmetric implies that the city can be modeled as a line with the CBD at one end.  The equilibria 
are represented by the length of the line that is urbanized.   
 
There are two types of actors considered in these models: landlords and tenants.  Generally, 
landlords and tenants are each assumed to be homogenous in all respects except for location, 
although sometimes tenants are broken into high and low income groups.  Another common 
assumption is that tenants are uniformly distributed across the city.2

 

  Though this assumption is 
somewhat limiting, it is a necessary assumption in spatial-temporal models because endogenous 
plot size almost always results in an intractable problem (Albers, 1996).  Furthermore, this 
assumption is acceptable if urban density is of no particular interest as is true in this literature; 
the motivation for growth control in this literature is a negative externality related to city size or 
population that is equally experienced by all tenants. 

Cities may be modeled as open or closed.  An open city has an endogenous population size and 
an exogenous utility level (tenants’ reservation utility) in each period.  Open city models are 
appropriate when migration is possible.  This implies that there is no population pressure because 
there is no excess demand for housing.  Furthermore, the city must be small with respect to the 
surrounding economy in order for utility to be exogenous (Brueckner, 1990).  A closed city 
implies that the population is exogenous in each period, while the utility level within the city is 
endogenous.  The closed city approach is appropriate when migration is impossible in the short-
run and expensive in the long-run (Kovacs and Larson, 2007).  A closed city assumption is more 
appropriate when modeling a city that is large with respect to the surrounding economy. 
 
In both models, equilibrium rental rates differ by location.  Furthermore, landlords and tenants 
are price takers.  In the open city case, rental rates increase until each tenant receives only his 
exogenous utility level (Brueckner, 1990).  In a closed city model, rental rates are determined by 
equating a fixed demand with supply.  If tenants are uniformly distributed then an exogenous 

                                                           
2 If uniform density is not assumed, the Muth-Mills model includes the supply side of the housing market.  Perfectly 
competitive producers buy or rent land from landowners, produce buildings with various combinations of land and 
capital (i.e. produce buildings of differing heights and thus floor space), and sell or rent land to tenants.  By 
assuming a uniform density (i.e. a fixed capital to land ratio) like Brueckner (1990), I do not explicitly model the 
supply side of the housing market though it is implicitly included. 
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population implies an exogenous city size.  In this case, the rental rate at each location must 
make each tenant indifferent to his location and the rental rate at the city boundary must equal 
the net return on the next best use.  In both types of models, the next best use is assumed to be 
agriculture, which receives a uniform net return across space (Sakashita, 1995).  
  
This paper builds on the framework of Brueckner (1990) by modifying an open city model in 
order to model oak rangeland development and preservation within a municipality.  A 
municipality is defined as a city and its surrounding undeveloped sphere of influence.3  The 
urban size-dependent externality is interpreted as a net land use externality, i.e. the value of 
agricultural externalities less the cost of urban externalities.   I make several significant changes 
to the open city model.  First, future net land use externalities are uncertain, and this uncertainty 
declines over time.  Because urban development is irreversible, a consequence of this assumption 
is that the postponement of development has value to the decision maker because she acquires 
information over time.  Second, the financial cost of land use change is assumed to be zero.  
Last, all urban and agricultural landlords rent their land to tenants.  Together with the 
assumptions that the municipality’s size is exogenously fixed and that tenants are uniformly 
distributed, this assumption implies that the population within the municipality is fixed over 
time.4

 
 

Albers (1996) and Albers and Robison (2007).  My paper most closely resembles Albers (1996), 
a paper that extends the work of Arrow and Fisher (1974), in several ways.  First, my paper and 
Albers (1996) are spatial-temporal land-use choice models.  Second, they both have the 
necessary temporal components for the existence of option value: irreversibility and uncertainty.  
In Albers (1996), a tropical forest with an uncertain future value due to the possible survival of 
Thai elephants is lost for certain when developed.  In my paper, development results in the loss 
of oak woodland, which has an uncertain future value due to climate change.  Third, both papers 
address two types of government as represented by open-loop and closed-loop control.  Both 
papers demonstrate that the closed-loop social planner undertakes less development than the 
open-loop social planner does.  This difference is the result of the closed-loop social planner 
accounting for the value of information which is conditional on choosing flexible land-uses, i.e. 
land uses that do not restrict future land use decisions.  Fourth, properties have the same 
qualities: property size is fixed and each property has two adjacent properties.  Last, there exist 
land use externalities with uncertain future values in both papers.  In Albers (1996), the land-use 
externalities are discrete benefits produced through the adjacency of tropical forest plots.  In my 
paper, a continuous net land-use externality function equals the sum of urban and agricultural 
location-dependent and location-independent externalities experienced at any location. 
   
                                                           
3 In California, a local government’s “sphere of influence” is defined legally as the area that the local government 
expects to serve in the future, including areas outside of its current boundary.  Each local government is legally 
required to produce a general plan for future development and land use within its entire “sphere of influence.” 
(LAFCO, 1997)  
4 An additional difference between the two models is the Brueckner (1990) assumes that tenants consume one unit 
of land, i.e. 𝐴 𝑃� = 1 where P is the population of tenants living within the municipality, whereas this paper assumes 
that tenants live on infinitely small units of land.  However, Brueckner integrates over space when calculating the 
socially-optimal urban growth boundary instead of summing over all plots.  The difference between this integral and 
the sum collapses to zero as A goes to infinity.  In other words, Brueckner (1990) implicitly assumes that A is large 
and that the ratio of property size to city size, 1 𝐴� , is small.     
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The primary difference between these models is that Albers (1996) models a centrally planned 
forest, whereas, I model privately owned oak woodlands.  This difference is driven by the 
difference in our research questions.  Albers (1996) is interested in how uncertainty, 
irreversibility, and externalities interact to affect various park managers’ land use decisions, 
whereas I am interested in how these same spatial-temporal attributes affect social welfare-
maximizing land use policies within a municipality characterized by private ownership.  As a 
result, Albers (1996) integrates these spatial-temporal components into a discrete spatial model 
of a public park made up of four adjacent zones, whereas I integrate them into a modified open-
city model.  My framework allows for analysis of traditional urban economic factors of land-use 
choice, such as distance to CBD and tenant preferences, on the optimal land use policies.  In 
addition, my paper solves for open-loop and closed-loop competitive and Pareto optimal land-
use configurations, while Albers (1996) only solves for open and closed-loop Pareto optimal 
land-use configurations.  Tables 1 and 2 below display the four problems examined in my paper 
and in Albers (1996), respectively, differentiating them by their assumptions.  Through the 
comparison of the fully spatial and the independent zone models, Albers (1996) demonstrates 
that uncertain spatial externalities give rise to an additional option value unaccounted for by 
Arrow and Fisher (1976).  Though Albers (1996) recognizes that this result indicates a possible 
difference between private and socially optimal land-use configurations, she does not solve for 
competitive equilibria in Albers (1996) or in Albers and Robinson (2007), which is an adaptation 
of Albers (1996) to Khao Yai National Park in Thailand.  Though Albers and Robinson (2007) 
explores the land use configurations chosen by different park managers, each of whom weighs 
the various land-use benefits and costs differently, they never solve for a competitive 
equilibrium.  Though Albers (1996) recognizes the need to account for quasi-option values when 
developing spatial-temporal land use policies under uncertainty, she does not model market 
instruments, as is done here.   
 

Table 1. The four fully-spatial models solved for in my paper. 
 

 
 
 

  

                                     Optimizer

Landlord Social Planner

My paper My paper
Albers (1996)

My paper My paper
Albers (1996)
Albers and Robinson (2007)

Control 
Problem

Open-
Loop

Closed-
Loop
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Table 2. The four social planner models solved for in Albers (1996) 
 

 
 
 
 
IV. Analytical Model 
 
This paper models a municipality over two time periods, 𝑡 ∈ {1,2}, when urban development is 
irreversible and a net land use externality exists and is uncertain in the second time period.  In 
the context of the specific policy problem that I examine, the municipality can be conceptualized 
as a small California city and its undeveloped area of influence situated in oak woodland habitat 
used for grazing.  The municipality’s oak woodland either thrives or degenerates over time due 
to climate change, represented as the second period net land use externality taking one of two 
possible states, 𝑘 ∈ {𝐿,𝐻}, which correspond to the services in period 2 produced by a given 
amount of oak being less than or greater than the services it provided in period 1 assuming that 
there is no cumulative environmental externality.  States H and L occur with probability 0 <
𝑝𝐻 < 1 and 𝑝𝐿 = 1 − 𝑝𝐻 respectively. 
 
The municipality is a one-dimensional space of exogenous size A.  Each point on the [0,𝐴] 
interval represents a property 𝑋𝑖 owned by an absentee landlord i and rented by a tenant j.  
Properties are infinitely small, and as a consequence there are an infinite number of landlords 
and tenants in the municipality.5

 

  By definition, the landlord cannot change the density of 
residents on her property.  The Central Business District (CBD) is located at 𝑋 = 0 where all 
tenants who rent urban land work. 

Tenants. Tenants live on either urban land or oak rangeland.  If tenant j is located in an urban 
area, he commutes to the CBD at a financial cost of T𝑗,𝑡,𝑘 = 𝑇�𝑋𝑗� in period t and state k, earns a 

salary 𝑦𝑡, and pays rent 𝑅𝑗,𝑡,𝑘.  Commuting cost increases with distance, i.e. 
𝜕𝑇�𝑋𝑗� 
𝜕𝑋𝑗

> 0, and 

𝑇�𝑋𝑗� is a twice continuously differentiable function.  If tenant j is located on oak rangeland, he 

                                                           
5 An alternative interpretation of this assumption is that each tenant chooses to live on one unit of land where one 
unit of land is small enough that each landlord’s land use choice has an insignificant effect on the net land use 
externality experienced by her tenant.  Like Brueckner (1990), integration is used as a simplification under the 
assumption that A is large enough for it to be approximately true. 

                   Spatial Assumption - Manager Type

Independent Zone Full-Spatial

My paper
Albers (1996) Albers (1996)

Arrow and Fisher (1976)

My paper
Albers (1996) Albers (1996)
Albers and Robinson (2007) Albers and Robinson (2007)
Arrow and Fisher (1976)

Open-
Loop

Closed-
Loop

Control 
Problem
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raises cattle for sale and earns profits Π𝑗,𝑡,𝑘 = Π�𝑋𝑗� in period t and state k and pays rent 𝑟𝑗,𝑡,𝑘.  
All agricultural tenants have access to the same agricultural technologies, so that land quality is 
the only source of difference in agricultural profits by location; the quality of grazing land is 

non-decreasing in distance from the CBD, i.e. 
𝜕Π�𝑋𝑗�
𝜕𝑋𝑗

≥ 0.  Agricultural profit is a twice 

continuously differentiable function.    Ranch profits are unaffected by climate change.  All cattle 
are sold outside the municipality in a perfectly competitive market and potential cattle producers 
in the municipality are sufficiently small relative to the market for the price to be unaffected.  
Agricultural tenants do not travel to work, so T𝑗,𝑡,𝑘 = 0 for all agricultural tenants.   
 
Tenants have homogenous, time invariant preferences represented by a time-additive, von 
Neumann-Morgenstern expected utility function.  Each tenant has a utility function 𝑉𝑗,𝑡,𝑘 =
𝑉�𝑐𝑗,𝑡,𝑘,𝑔𝑗,𝑡,𝑘,𝑆𝑗,𝑡,𝑘�, which is twice continuously differentiable in all its arguments.  Tenants 

gain utility from consuming housing 𝑔𝑗,𝑡,𝑘 � 𝜕𝑉
𝜕𝑔𝑗,𝑡,𝑘

> 0�, the numeraire good 𝑐𝑗,𝑡,𝑘  � 𝜕𝑉
𝜕𝑐𝑗,𝑡,𝑘 

> 0�, 

and the net land use externality 𝑆𝑗,𝑡,𝑘  � 𝜕𝑉
𝜕𝑆𝑗,𝑡,𝑘 

> 0�. 

 
In each period t and state k, tenant j chooses to live or not live within the municipality at location 
𝑋𝑗, represented by 𝑔𝑗,𝑡,𝑘 = 1 or 𝑔𝑗,𝑡,𝑘 = 0 respectively, and the quantity of the numeraire good, 
𝑐𝑗,𝑡,𝑘, to consume in order to maximize his utility subject to his budget constraint.  His budget 
constraint depends on the land use at 𝑋𝑗.  It is 𝑐𝑗,𝑡,𝑘 + 𝑅𝑗,𝑡,𝑘𝑔𝑗,𝑡,𝑘 = 𝑦𝑡 − 𝑇�𝑋𝑗� when he lives on 
urban land and 𝑐𝑗,𝑡,𝑘 + 𝑟𝑗,𝑡,𝑘𝑔𝑗,𝑡,𝑘 = Π�𝑋𝑗� when he lives on agricultural land.  The tenant makes 
his consumption choice knowing that there is a net land use externality equal to 𝑆𝑗,1 in period 1 at 
location j and a net land use externality equal to 𝑆𝑗,2,𝑘 in period 2 and state k.  Tenant j 
experiences a positive net land use externality in period t when 𝑆𝑗,𝑡,𝑘 > 0.  Because the tenant 
can move freely and costly into and out of the municipality, he must receive at least his 
exogenous level of utility, which he could obtain outside of the municipality in period t, 𝑉�𝑡.6

 

 
Exogenous utility, urban salaries, and net land use externalities are the only three parameters that 
vary over time, and, as a result, drive the growth of urban land over time. 

Tenant j’s decision problem in period t and state k when he lives on urban land is 
 

max
𝑐𝑗,𝑡,𝑘,𝑔𝑗,𝑡,𝑘

𝑔𝑗,𝑡,𝑘𝑉�𝑐𝑗,𝑡,𝑘,𝑔𝑗,𝑡,𝑘𝑆𝑗,𝑡,𝑘� + �1 − 𝑔𝑗,𝑡,𝑘�𝑉�𝑡  
subject to: 
𝑐𝑗,𝑡,𝑘 + 𝑅𝑗,𝑡,𝑘 = 𝑦𝑡 − 𝑇�𝑋𝑗� 
𝑔𝑗,𝑡,𝑘 = 0 or 1. 
 

Tenant j’s decision problem in period t and state k when he lives on agricultural land is 
 

                                                           
6 It is standard to assume that there is a cost of daily commuting within the municipality, but no cost to relocating 
into, out of, and within the municipality.  See Brueckner (1990). 
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max
𝑐𝑗,𝑡,𝑘,𝑔𝑗,𝑡,𝑘

𝑔𝑗,𝑡,𝑘𝑉�𝑐𝑗,𝑡,𝑘,𝑔𝑗,𝑡,𝑘𝑆𝑗,𝑡,𝑘� + �1 − 𝑔𝑗,𝑡,𝑘�𝑉�𝑡  
subject to: 
𝑐𝑗,𝑡,𝑘 + 𝑟𝑗,𝑡,𝑘 = Π�𝑋𝑗� 
𝑔𝑗,𝑡,𝑘 = 0 or 1.  

 
Landlords. All landlords are identical, except for the location of their properties.  Landlords do 
not live within the municipality and they are price takers.  The ith landlord's profit in period t and 
state k, 𝑌𝑖,𝑡,𝑘, equals 𝑌𝑖,𝑡,𝑘 = 𝑤𝑖,𝑡,𝑘𝑅𝑖,𝑡,𝑘 + �1 − 𝑤𝑖,𝑡,𝑘�𝑟𝑖,𝑡,𝑘 where 𝑤𝑖,𝑡,𝑘 = 1 if she chooses to rent 
her land for urban use and 𝑤𝑖,𝑡,𝑘 = 0 if she chooses to rent her land for agricultural use.7

 

  
Renting land for urban purposes requires development.  Development is costless to the landlord, 
but subject to an irreversibility constraint: 𝑤𝑖,2,𝑘 ≥ 𝑤𝑖,1.  Each landlord makes her land use 
decisions in periods 𝑡 ∈ {1,2} and states 𝑘 ∈ {𝐿,𝐻}, i.e. chooses 𝑤𝑖,𝑡,𝑘, to maximize the present 
value of her expected profits subject to the irreversibility constraint.  I assume that all land is 
initially in oak rangeland, so that the first period development decision is unconstrained by an 
earlier development choice. 

A key concept in this paper is the marginal landlord, who is defined as the landlord who is 
indifferent between the urban and agricultural use of her land.  The marginal landlord in period t 
and state k, denoted 𝑋�𝑡,𝑘, is endogenously determined.  Because 𝑋�𝑡,𝑘 represents the urban-
agricultural boundary and I impose assumptions in Section VII that guarantee 𝑋�𝑡,𝑘 is unique, 
urban space covers 𝑋 ∈ [0,𝑋�𝑡,𝑘 ] and oak rangeland covers 𝑋 ∈ ��𝑋�𝑡,𝑘, A��.   
 
The net land use externality. A net land use externality at a specific location is the sum of urban 
and agricultural location-independent and location-dependent externalities.  Location-
independent externalities are externalities that all tenants experience equally.  Location-
dependent externalities are externalities that all tenants experience differently based on their 
location within the municipality.  I limit attention to the scenario in which a natural resource may 
be under conserved.  In my specific policy application, this corresponds to assuming that urban 
land produce negative location-independent externalities, such as smog, and negative location-
dependent externalities, such as noise pollution, while oak rangeland produces positive location-
independent externalities, such as supporting local plant and animal populations, biodiversity, 
clean water, and carbon sequestration, and positive location-dependent externalities, such as 
aesthetics and proximity to plant and animal habitat.  Both oak location-independent and 
location-dependent externalities have uncertain values in the second period due to climate 
change. 
 
The net land use externality experienced by tenant j in period t in state k is a function of the 
amount of urban space, 𝑋�𝑡,𝑘, and his location, 𝑋𝑗. The net location-independent externality is 
non-increasing in 𝑋�𝑡,𝑘 and is unaffected by a change in 𝑋𝑗.  For a given 𝑋𝑗, the net location-
dependent externality is non-increasing in 𝑋�𝑡,𝑘.  In the case of urban tenants, they are farther 
from the urban-agricultural boundary, strictly speaking, as the amount of urban space expands, 

                                                           
7 In equilibrium, 𝑅𝑖,𝑡,𝑘 and 𝑟𝑖,𝑡,𝑘 are functions of location 𝑋𝑖 and the amount of urban space 𝑋�𝑡,𝑘.  Therefore, 𝑌𝑖,𝑡,𝑘 is a 
function of these variables, and can be written as 𝑌𝑖,𝑡,𝑘 = 𝑌𝑡,𝑘�𝑋𝑖 ,𝑋�𝑡,𝑘�. 
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which implies that they experience less of the positive location-dependent externalities from oak 
woodland.  In the case of agricultural tenants, they are closer to the urban-rural boundary as the 
amount of urban space expands, which means that they are nearer to the negative location-
dependent externalities of urban space.  For a given 𝑋�𝑡,𝑘, the net location-dependent externality is 
non-decreasing in 𝑋𝑗 for both the urban and agricultural tenants.  
 
Formally, 𝑆𝑗,1 = 𝑆1�𝑋𝑗,𝑋�1� is the net externality experienced by tenant j in period 1, and 
𝜕𝑆1�𝑋𝑗,𝑋�1�

𝜕𝑋𝑗
≥ 0 and 

𝜕𝑆1�𝑋𝑗,𝑋�1�
𝜕𝑋�1

≤ 0.  I assume that it is a twice continuously differentiable function 

in all its arguments.  The net externality experienced by tenant j in period 2, 𝑆𝑗,2,𝑘 =
𝑆2,𝑘�𝑋𝑗,𝑋�1,𝑋�2�, is dependent on state 𝑘 ∈ {𝐿,𝐻}: 

 
(1)   𝑆2,𝐿�𝑋𝑗, 0,𝑋�� < 𝑆1�𝑋𝑗,𝑋��  < 𝑆2,𝐻�𝑋𝑗, 0,𝑋�� ∀𝑋𝑗,𝑋� < 𝐴. 

 
𝑆2,𝑘�𝑋𝑗,𝑋�1,𝑋�2� is a twice continuously differentiable function in 𝑋, 𝑋�1, and 𝑋�2.8

 

  As was the 

case for the first period net externality, 
𝜕𝑆2,𝑘�𝑋𝑗,𝑋�1,𝑋�2�

𝜕𝑋𝑗
≥ 0, 

𝜕𝑆2,𝑘�𝑋𝑗,𝑋�1,𝑋�2�
𝜕𝑋�1

≤ 0, and 
𝜕𝑆2,𝑘�𝑋𝑗,𝑋�1,𝑋�2�

𝜕𝑋�2
≤

0 for all 𝑘 ∈ {𝐿,𝐻}.  Because of the cumulative environmental effects of the urbanization of oak 
woodlands, the net land use externality in period 2 and state k is a function of the amount of 
urban space in period 1.  Therefore, expression (1) does not necessarily hold when there is 
development in the first period. 

V. The Maximization Problems 
 
The goal of this paper is to demonstrate that a local government’s social welfare-maximizing 
land use policies are affected by whether it takes into account the uncertainty over future oak 
woodland amenities due to climate change.  I address this research question in two steps.  First, I 
find the amount of urban land, 𝑋�𝑡,𝑘, in each period ∀𝑡 ∈ {1,2} and future state ∀𝑘 ∈ {𝐿,𝐻} 
chosen by a profit-maximizing landlord and a welfare-maximizing social planner in open-loop 
and closed-loop contexts.  Second, I calculate the socially optimal magnitudes of three land-use 
policies: urban growth boundaries, location-independent development fees, and location-
dependent development fees. 

 
In terms of notation, superscript 𝑚 ∈ {𝑀,𝑃} indicates the decision maker: M indicates the 
landlord and P the social planner.  Superscript 𝑛 ∈ {𝑂,𝐶} indicates the type of control problem: 
O is an open-loop control problem and C is a closed-loop control problem.  Superscript * 
indicates that the corresponding variable is at its optimal value, e.g. 𝑋�𝑡,𝑘

𝑛𝑚∗, or the corresponding 
function is evaluated at the optimal amount of urban land, e.g. 𝑆𝑖,𝑡,𝑘

𝑛𝑚 ∗ = 𝑆𝑡,𝑘�𝑋𝑖,𝑋�1
𝑛𝑚∗,𝑋�2,𝑘

𝑛𝑚∗�.  
Table 3 summarizes the four problems I analyze, including notation. 
 
                                                           
8 In the traditional irreversibility literature, the second period net land use externality function is written as 𝑆𝑗,2,𝑘 =
𝑆2�𝑋𝑗 ,𝑋�1,𝑋�2|𝑍 = 𝑧𝑘� where Z is a random variable, which has 2 possible events, 𝑧𝐿 and 𝑧𝐻, corresponding to states 
L and H.  The probability that the random variable Z will take the value 𝑧𝐿 is 𝑝𝐿  and 𝑧𝐻 is 𝑝𝐻 .  This traditional 
notation makes explicit that climate change affects only the parameters of the net land use externality function, and 
not the functional form itself.   For simplicity, I utilize the alternative specification in (1). 
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Table 3. Optimization Problems 
 

  
Optimizer 

    

  
Landlord (m=M) Social Planner (m=P) 

Control 
Problem 

Open-
Loop 
(n=O) 

Solve 𝑊𝑂𝑀 to find 𝑋�1𝑂𝑀
∗ and 

𝑋�2𝑂𝑀
∗ when facing net land use 

externalities 𝑆𝑖,𝑡,𝑘
𝑂𝑀 , rental rate 

functions 𝑅𝑖,𝑡,𝑘
𝑂𝑀  and 𝑟𝑖,𝑡,𝑘

𝑂𝑀 , 
numeraire good consumption 
𝑐𝑗,𝑡,𝑘
𝑂𝑀 , and housing consumption 
𝑔𝑗,𝑡,𝑘
𝑂𝑀  

Solve 𝑊𝑂𝑃 to find 𝑋�1𝑂𝑃
∗ and 

𝑋�2𝑂𝑃
∗ when facing net land use 

externalities 𝑆𝑖,𝑡,𝑘
𝑂𝑃 , rental rate 

functions 𝑅𝑖,𝑡,𝑘
𝑂𝑃  and 𝑟𝑖,𝑡,𝑘

𝑂𝑃 , 
numeraire good consumption 
𝑐𝑗,𝑡,𝑘
𝑂𝑃 , and housing consumption 
𝑔𝑗,𝑡,𝑘
𝑂𝑃  

Closed-
Loop 
(n=C) 

Solve 𝑊𝐶𝑀 to find 𝑋�1𝐶𝑀
∗ and 

𝑋�2,𝑘
𝐶𝑀∗ when facing net land use 

externalities 𝑆𝑖,𝑡,𝑘
𝐶𝑀 , rental rate 

functions 𝑅𝑖,𝑡,𝑘
𝐶𝑀  and 𝑟𝑖,𝑡,𝑘

𝐶𝑀 , 
numeraire good consumption 
𝑐𝑗,𝑡,𝑘
𝐶𝑀 , and housing consumption 
𝑔𝑗,𝑡,𝑘
𝐶𝑀  

Solve 𝑊𝐶𝑃 to find 𝑋�1𝐶𝑃
∗ and 

𝑋�2,𝑘
𝐶𝑃∗ when facing net land use 

externalities 𝑆𝑖,𝑡,𝑘
𝐶𝑃 , rental rate 

functions 𝑅𝑖,𝑡,𝑘
𝐶𝑃  and 𝑟𝑖,𝑡,𝑘

𝐶𝑃 , 
numeraire good consumption 
𝑐𝑗,𝑡,𝑘
𝐶𝑃 , and housing consumption 
𝑔𝑗,𝑡,𝑘
𝐶𝑃  

 
The Optimizers. The landlords and the social planner have the same information regarding the 
effects of climate change on oak woodlands in state k and the same a priori beliefs about the 
probabilities of each future state occurring.  Only their objective functions differ.  As discussed 
earlier, each landowner maximizes the present value of expected profits by choosing whether to 
develop her land for urban use in each period subject to an irreversibility constraint.  Landowners 
do not consider the effect of their land use decisions on surrounding tenants and landlords and 
take other landlords’ land use decisions as given.  In contrast, the benevolent social planner 
chooses the optimal amount of urban land in each period subject to an irreversibility constraint in 
order to maximize the present value of expected social utility within the municipality.  Because 
tenants’ reservation utility is exogenous, this is equivalent to maximizing the present value of 
expected landlord profits, taking into consideration the effect of developing each piece of land on 
other tenants and landlords. 
 
The only difference between the landlord profit-maximization problem and the social planner 
problem is in the treatment of the net land use externalities.  Because landlord i takes the land 
use decisions of other landlords as given, modeling the profit-maximizing decisions of all I 
landlords is equivalent to modeling the decisions of a single landlord who maximizes the present 
value of expected municipality-wide profits by choosing the amount of urban land in each period 
t and state k assuming that the level of the externality varies only with the location of the 
property: 𝑆𝑖,1𝑛𝑀 = 𝑆1̅(𝑋𝑖) and 𝑆𝑖,2,𝑘

𝑛𝑀 = 𝑆2̅,𝑘(𝑋𝑖) ∀𝑛 ∈ {𝑂,𝐶}.  In equilibrium, the net land use 
externality at location 𝑋𝑖 in the n-type control problem equals 𝑆𝑖,1𝑛𝑀

∗ = 𝑆1 �𝑋𝑖,𝑋�1
𝑛𝑀∗ � in the first 

period and 𝑆𝑖,2,𝑘
𝑛𝑀 ∗ = 𝑆2,𝑘 �𝑋𝑖,𝑋�1

𝑛𝑀∗,𝑋�2,𝑘
𝑛𝑀∗� in the second period if state k occurs where 𝑋�𝑡,𝑘

𝑛𝑀∗ is the 
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Nash equilibrium amount of urban land in period t and state k in the n type control problem.  
Note that the net land use externality that the landowner perceives at location 𝑋𝑖 is what actually 
exists at location 𝑋𝑖 in equilibrium.  The social planner problem, in contrast, maximizes the 
present value of expected municipality-wide profits by choosing the amount of urban land in 
each period t and state k recognizing that the externalities vary with tenant location and the 
amount of urban space in periods one and two: 𝑆𝑖,1𝑛𝑃 = 𝑆1�𝑋𝑖,𝑋�1

𝑛𝑃� and 

𝑆𝑖,2,𝑘
𝑛𝑃 = 𝑆2,𝑘�𝑋𝑖,𝑋�1

𝑛𝑃,𝑋�2,𝑘
𝑛𝑃� ∀𝑛 ∈ {𝑂,𝐶}.  In equilibrium, the net land use externality at location 𝑋𝑖 

in the n-type control problem equals 𝑆𝑖,1𝑛𝑃
∗ = 𝑆1 �𝑋𝑖,𝑋�1

𝑛𝑃∗ � in the first period and 𝑆𝑖,2,𝑘
𝑛𝑃 ∗ =

𝑆2,𝑘 �𝑋𝑖,𝑋�1
𝑛𝑃∗,𝑋�2,𝑘

𝑛𝑃 ∗� in the second period if state k occurs where 𝑋�𝑡,𝑘
𝑛𝑃∗ is the Pareto optimal 

amount of urban land in period t and state k in the n type control problem. 
 
The type of control problem. Over time, new information about the effects of climate change 
becomes available.  The optimizer in the closed-loop problem recognizes that new information 
will emerge, while the optimizer in the open-loop problem ignores or is unable to react to this 
information.  Formally, the optimizer m learns the true state of nature either before (n=C) or after 
(n=O) she makes her second period land use decision. 
  
In the closed-loop problem, the order of events is as follows: the decision maker makes her first 
period land use decision, the rental rates for period one are determined for all locations within 
the municipality, the true state of nature is revealed, the decision maker makes her second period 
land use decision, and, finally, rental rates for period two are determined.  Consequently, the 
closed-loop problem for decision maker m has the following specification, 
 

(𝟐)   𝑊𝐶𝑚 =
max
𝑋�1
𝐶𝑚

⎩
⎨

⎧
� 𝑅𝑖,1𝐶𝑚
𝑋�1
𝐶𝑚

0
𝑑𝑋𝑖 + � 𝑟𝑖,1𝐶𝑚

𝐴

𝑋�1
𝐶𝑚 𝑑𝑋𝑖 + 𝐵 � 𝑝𝑘

𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑚 �� 𝑅𝑖,2,𝑘

𝐶𝑚
𝑋�2,𝑘
𝐶𝑚

0
𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘

𝐶𝑚 𝑑𝑋𝑖

𝐴

𝑋�2,𝑘
𝐶𝑚

�

⎭
⎬

⎫
 

𝑠. 𝑡.𝑋�2,𝑘
𝐶𝑚

≥ 𝑋�1
𝐶𝑚

    ∀𝑚 ∈ {𝑀,𝑃}. 

 
In the open-loop problem, the order of events is as follows: the decision maker makes her first 
period land use decision, the rental rates for period one are determined for all locations within 
the municipality, the decision maker makes her second period land use decision, the true state of 
nature is revealed, and, finally, the rental rates in period two are determined for all locations 
within the municipality.  Thus, the open-loop problem for decision maker m has the following 
specification, 
 

(𝟑)𝑊𝑂𝑚 =
max

𝑋�1
𝑂𝑚

,𝑋�2
𝑂𝑚 �� 𝑅𝑖,1𝑂𝑚

𝑋�1
𝑂𝑚

0
𝑑𝑋𝑖 + � 𝑟𝑖,1𝑂𝑚

𝐴

𝑋�1
𝑂𝑚 𝑑𝑋𝑖 + 𝐵 � 𝑝𝑘

𝑘∈{𝐿,𝐻}

�� 𝑅𝑖,2,𝑘
𝑂𝑚

𝑋�2
𝑂𝑚

0
𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘

𝑂𝑚
𝐴

𝑋�2
𝑂𝑚 𝑑𝑋𝑖�� 

𝑠. 𝑡.𝑋�2
𝑂𝑚

≥ 𝑋�1
𝑂𝑚

   ∀𝑚 ∈ {𝑀,𝑃}. 
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Land use policies.  This paper analyzes three land use policies: urban growth boundaries, 
location-dependent development fees, and location-independent development fees.  The first 
period closed-loop urban growth boundary is denoted 𝑋�1𝐶 , and the state-dependent second period 
closed-loop urban growth boundaries are 𝑋�2,𝑘

𝐶 .  The growth boundaries enter as constraints on the 
amount of urban land in each period.  Thus, the closed-loop landlord problem with urban growth 
boundaries has the following specification: 
 

(𝟒)
max
𝑋�1
𝐶𝑀

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑅𝑖,1𝐶𝑀

𝑋�1
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝑟𝑖,1𝐶𝑀

𝐴

𝑋�1
𝐶𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑀 �� 𝑅𝑖,2,𝑘

𝐶𝑀
𝑋�2,𝑘
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘

𝐶𝑀 𝑑𝑋𝑖

𝐴

𝑋�2,𝑘
𝐶𝑀

�

⎭
⎪⎪
⎬

⎪⎪
⎫

 

𝑠. 𝑡.𝑋�2,𝑘
𝐶𝑀 ≥ 𝑋�1

𝐶𝑀, 𝑋�1𝐶𝑀 ≤ 𝑋�1
𝐶
, and  𝑋�2,𝑘

𝐶𝑀 ≤ 𝑋�2,𝑘
𝐶

 ∀𝑘 ∈ {𝐿,𝐻}. 

The first and second period open-loop urban growth boundaries are denoted as 𝑋�1𝑂 and 𝑋�2𝑂.  The 
open-loop specification of the landlord problem with urban growth boundaries is 
 

(𝟓)
max

𝑋�1
𝑂𝑀,𝑋�2

𝑂𝑀

⎩
⎪
⎨

⎪
⎧ � 𝑅𝑖,1𝑂𝑀

𝑋�1
𝑂𝑀

0
𝑑𝑋𝑖 + � 𝑟𝑖,1𝑂𝑀

𝐴

𝑋�1
𝑂𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

�� 𝑅𝑖,2,𝑘
𝑂𝑀

𝑋�2
𝑂𝑀

0
𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘

𝑂𝑀
𝐴

𝑋�2
𝑂𝑀

𝑑𝑋𝑖�
⎭
⎪
⎬

⎪
⎫

 

𝑠. 𝑡.𝑋�2
𝑂𝑀 ≥ 𝑋�1

𝑂𝑀, 𝑋�1𝑂𝑀 ≤ 𝑋�1
𝑂

 and  𝑋�2𝑂𝑀 ≤ 𝑋�2
𝑂

. 

The first period closed-loop location-dependent development fee at location 𝑋𝑖 is denoted 
𝐷𝑖,1𝐶 = 𝐷1𝐶(𝑋𝑖) ∀𝑖 ∈ 𝐼, and the state-dependent second period closed-loop location-dependent 
development fees at location 𝑋𝑖 are 𝐷𝑖,2,𝑘

𝐶 = 𝐷2,𝑘
𝐶 (𝑋𝑖) ∀𝑖 ∈ 𝐼.  The location-dependent 

development fee in period t and state k integrated over the land developed in that period and state 
enters as an additional term in the objective function.  Therefore, the closed-loop landlord 
problem with location-dependent development fees has the following specification: 
 

(𝟔)
max
𝑋�1
𝐶𝑀

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑅𝑖,1𝐶𝑀

𝑋�1
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝐷1𝐶(𝑋𝑖)𝑑𝑋𝑖

𝑋�1
𝐶𝑀

0
+ � 𝑟𝑖,1𝐶𝑀

𝐴

𝑋�1
𝐶𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑀 �� 𝑅𝑖,2,𝑘

𝐶𝑀
𝑋�2,𝑘
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝐷2,𝑘

𝐶 (𝑋𝑖)
𝑋�2,𝑘
𝐶𝑀

𝑋�1
𝐶𝑀

𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘
𝐶𝑀 𝑑𝑋𝑖

𝐴

𝑋�2,𝑘
𝐶𝑀

�

⎭
⎪⎪
⎬

⎪⎪
⎫

 

𝑠. 𝑡.𝑋�2,𝑘
𝐶𝑀 ≥ 𝑋�1

𝐶𝑀 . 



18 
 

The first and second period open-loop location-dependent development fees at location 𝑋𝑖 are 
denoted 𝐷𝑖,1𝑂 = 𝐷1𝑂(𝑋𝑖) and 𝐷𝑖,2𝑂 = 𝐷2𝑂(𝑋𝑖) ∀𝑖 ∈ 𝐼.  The open-loop specification of the landlord 
problem with location-dependent development fees is 
 
 

(𝟕)
max

𝑋�1
𝑂𝑀,𝑋�2

𝑂𝑀

⎩
⎪
⎨

⎪
⎧ � 𝑅𝑖,1𝑂𝑀

𝑋�1
𝑂𝑀

0
𝑑𝑋𝑖 + � 𝐷1𝑂(𝑋𝑖)𝑑𝑋𝑖

𝑋�1
𝑂𝑀

0
+ � 𝑟𝑖,1𝑂𝑀

𝐴

𝑋�1
𝑂𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

�� 𝑅𝑖,2,𝑘
𝑂𝑀

𝑋�2
𝑂𝑀

0
𝑑𝑋𝑖 + 𝐵� 𝐷2𝑂(𝑋𝑖)

𝑋�2
𝑂𝑀

𝑋�1
𝑂𝑀

𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘
𝑂𝑀

𝐴

𝑋�2
𝑂𝑀

𝑑𝑋𝑖�
⎭
⎪
⎬

⎪
⎫

 

𝑠. 𝑡.𝑋�2
𝑂𝑀 ≥ 𝑋�1

𝑂𝑀 . 

The first period closed-loop location-independent development fee is denoted 𝐹1𝐶 and the state-
dependent second period closed-loop location-independent development fees are 𝐹2,𝑘

𝐶 .  The 
location-independent development fee in period t and state k integrated over the land developed 
in that period and state enters as an additional term in the objective function.  The closed-loop 
landlord problem with the location-independent development fees has the following 
specification: 
 

(𝟖)
max
𝑋�1
𝐶𝑀

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑅𝑖,1𝐶𝑀

𝑋�1
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝐹1𝐶𝑑𝑋𝑖

𝑋�1
𝐶𝑀

0
+ � 𝑟𝑖,1𝐶𝑀

𝐴

𝑋�1
𝐶𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑀 �� 𝑅𝑖,2,𝑘

𝐶𝑀
𝑋�2,𝑘
𝐶𝑀

0
𝑑𝑋𝑖 + � 𝐹2,𝑘

𝐶
𝑋�2,𝑘
𝐶𝑀

𝑋�1
𝐶𝑀

𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘
𝐶𝑀 𝑑𝑋𝑖

𝐴

𝑋�2,𝑘
𝐶𝑀

�

⎭
⎪⎪
⎬

⎪⎪
⎫

  

 
𝑠. 𝑡.𝑋�2,𝑘

𝐶𝑀 ≥ 𝑋�1
𝐶𝑀. 

 
The first and second period open-loop location-independent development fees are denoted 𝐹1𝑂 
and 𝐹2𝑂. The open-loop specification of the landlord problem with location-independent 
development fees is 
  

(𝟗)
max

𝑋�1
𝑂𝑀,𝑋�2

𝑂𝑀

⎩
⎪
⎨

⎪
⎧ � 𝑅𝑖,1𝑂𝑀

𝑋�1
𝑂𝑀

0
𝑑𝑋𝑖 + � 𝐹1𝑂𝑑𝑋𝑖

𝑋�1
𝑂𝑀

0
+ � 𝑟𝑖,1𝑂𝑀

𝐴

𝑋�1
𝑂𝑀

𝑑𝑋𝑖

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

�� 𝑅𝑖,2,𝑘
𝑂𝑀

𝑋�2
𝑂𝑀

0
𝑑𝑋𝑖 + 𝐵� 𝐹2𝑂

𝑋�2
𝑂𝑀

𝑋�1
𝑂𝑀

𝑑𝑋𝑖 + � 𝑟𝑖,2,𝑘
𝑂𝑀

𝐴

𝑋�2
𝑂𝑀

𝑑𝑋𝑖�
⎭
⎪
⎬

⎪
⎫

 

𝑠. 𝑡.𝑋�2
𝑂𝑀 ≥ 𝑋�1

𝑂𝑀. 
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VI. Solution Method 
 
I solve for 𝑋�𝑡,𝑘

𝑛𝑚 in the maximization problems specified in the previous section using three steps.  
First, I solve for the equilibrium rental rates for decision maker m as a function of 𝑋𝑗, 𝑦𝑡, 𝑉�𝑡, and 
𝑋�𝑡,𝑘
𝑛𝑚; these equilibrium rental rates apply to both the open-loop and closed-loop forms.  Second, 

I solve for each problem’s two-period Euler conditions.  From this set of Euler conditions, I 
determine the expression for each problem’s optimal amount of urban land.  Finally, I derive the 
social welfare-maximizing land-use policies under each type of control problem by comparing 
Euler conditions between problems.9

 
 

Determining equilibrium rental rates.  All tenants receive their exogenous reservation utility, 𝑉�𝑡, 
in equilibrium, which implies that one of the following two conditions applies to every 𝑋𝑗 in 
equilibrium: 
 

(10a) 𝑉�𝑦𝑡 − 𝑇�𝑋𝑗� − 𝑅𝑗,𝑡,𝑘
𝑛𝑚 , 1, 𝑆𝑗,𝑡,𝑘

𝑛𝑚 � = 𝑉�𝑡 
 
when 𝑋𝑗 is urbanized and 
 

(10b) 𝑉�Π�𝑋𝑗� − 𝑟𝑗,𝑡,𝑘
𝑛𝑚 , 1, 𝑆𝑗,𝑡,𝑘

𝑛𝑚 � = 𝑉�𝑡 
 

when 𝑋𝑗 is in agriculture.  I obtain the equilibrium rental rate for each landlord and social planner 
problem by substituting the appropriate definition of 𝑆𝑗,𝑡,𝑘

𝑛𝑚 .   
 
Substituting the landlord’s net land use externality definitions into expressions (10a) and (10b) 
and invoking the implicit function theorem allows me to establish that the following urban and 
agricultural rental rates exist in the competitive equilibrium: 
  

𝑅𝑗,1
𝑛𝑀 = 𝑅�1�𝑦1,𝑉�1,𝑋𝑗� , 

 
𝑅𝑗,2,𝑘
𝑛𝑀 = 𝑅�2,𝑘�𝑦2,𝑉�2,𝑋𝑗�, 

 
𝑟𝑗,1
𝑛𝑀 = �̅�1�𝑉�1,𝑋𝑗� , 

 
and 
 

𝑟𝑗,2,𝑘
𝑛𝑀 = �̅�2,𝑘�𝑉�2,𝑋𝑗� ∀𝑛 ∈ {𝑂,𝐶}. 

 
In the competitive equilibrium, urban and agricultural rental rates are functions of property 
location 𝑋𝑗 only.  Note that these definitions of the rental rates apply to both the open-loop and 
closed-loop landlord problems.  

                                                           
9 In order to determine the socially optimal policies, I assume that the government can credibly bind its hands when 
determining land use policy.  In addition, the issue of time-consistency is addressed in section VIII where I 
demonstrate that all three policies are time consistent if there is no cumulative environmental externality.   
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Substituting the social planner’s net land use externality definitions into expressions (10a) and 
(10b) and invoking the implicit function theorem allows me to establish that the following urban 
and agricultural rental rates exist in the social planner problem:  
 

𝑅𝑗,1
𝑛𝑃 = 𝑅1�𝑦1,𝑉�1,𝑋𝑗,𝑋�1𝑛𝑃�, 

 
𝑅𝑗,2,𝑘
𝑛𝑃 = 𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃�, 
 

𝑟𝑗,1
𝑛𝑃 = 𝑟1�𝑉�1,𝑋𝑗,𝑋�1𝑛𝑃�, 

 
and 
 

𝑟𝑗,2,𝑘
𝑛𝑃 = 𝑟2,𝑘�𝑉�2,𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃 � ∀𝑛 ∈ {𝑂,𝐶}. 
 

Invoking the implicit function theorem, there exists some function ℎ� such that 𝑐𝑗,𝑡,𝑘
𝑛𝑚 =

ℎ��𝑔𝑗,𝑡,𝑘
𝑛𝑚 , 𝑆𝑗,𝑡,𝑘

𝑛𝑚 ,𝑉�𝑡�.  Because the urban and agricultural rental rates are functions of 𝑐𝑗,𝑡,𝑘
𝑛𝑚 , i.e. 

𝑅𝑗,𝑡,𝑘
𝑛𝑚 = 𝑦𝑡 − 𝑇𝑗,𝑡,𝑘  − 𝑐𝑗,𝑡,𝑘

𝑛𝑚  and 𝑟𝑗,𝑡,𝑘
𝑛𝑚 = Π𝑗,𝑡,𝑘 − 𝑐𝑗,𝑡,𝑘

𝑛𝑚 , the urban and agricultural rental rate 
functions are of the forms 𝑅𝑗,𝑡,𝑘

𝑛𝑚 = 𝑦𝑡 − 𝑇�𝑋𝑗� − ℎ��𝑔𝑗,𝑡,𝑘
𝑛𝑚 , 𝑆𝑗,𝑡,𝑘

𝑛𝑚 ,𝑉�𝑡� and 𝑟𝑗,𝑡,𝑘
𝑛𝑚 = Π�𝑋𝑗� −

ℎ��𝑔𝑗,𝑡,𝑘
𝑛𝑚 , 𝑆𝑗,𝑡,𝑘

𝑛𝑚 ,𝑉�𝑡�.  Because the landlord incorrectly assumes that externalities vary only with the 
location of the tenant, the equilibrium consumption of the numeraire good for tenant j in period t 
and state k in the landlord profit-maximization problems varies only with tenant location: 
𝑐𝑗,1
𝑛𝑀 = ℎ�  �1, 𝑆1̅�𝑋𝑗� ,𝑉�1� = ℎ�1�𝑋𝑗 ,𝑉�1� and 𝑐𝑗,2,𝑘

𝑛𝑀 = ℎ� �1, 𝑆2̅,𝑘�𝑋𝑗�,𝑉�2� = ℎ�2,𝑘�𝑋𝑗,𝑉�2� ∀𝑛 ∈
{𝑂,𝐶}.  Therefore, the following urban and agricultural rental rates exist in the landlord problem:  
 

𝑅𝑗,1
𝑛𝑀 = 𝑅�1�𝑦1,𝑉�1,𝑋𝑗� = 𝑦1 − 𝑇�𝑋𝑗� − ℎ�1�𝑋𝑗,𝑉�1�, 

 
𝑅𝑗,2,𝑘
𝑛𝑀 = 𝑅�2,𝑘�𝑦2,𝑉�2,𝑋𝑗� = 𝑦2 − 𝑇�𝑋𝑗� − ℎ�2,𝑘�𝑋𝑗,𝑉�2�, 

 
𝑟𝑗,1
𝑛𝑀 = �̅�1�𝑉�1,𝑋𝑗� = Π�𝑋𝑗� − ℎ�1�𝑋𝑗,𝑉�1�, 

 
and  
 

𝑟𝑗,2,𝑘
𝑛𝑀 = �̅�2,𝑘�𝑉�2,𝑋𝑗� = Π�𝑋𝑗� − ℎ�2,𝑘�𝑋𝑗,𝑉�2� ∀𝑛 ∈ {𝑂,𝐶}.10

  
 

Though the landowner perceives rental rates as varying with only location, urban and agricultural 
rental rates are also functions of the amount of urban space when in Nash equilibrium.  The net 
land use externality at location 𝑋𝑗 when the landlord problem is in competitive equilibrium 
equals 𝑆𝑗,1

𝑛𝑀∗ = 𝑆1�𝑋𝑗,𝑋�1𝑛𝑀
∗� in the first period and 𝑆𝑗,2,𝑘

𝑛𝑀 ∗ = 𝑆2,𝑘�𝑋𝑗,𝑋�1𝑛𝑀
∗,𝑋�2,𝑘

𝑛𝑀∗� in the second 
                                                           
10 Because the random variable Z is in the second period net land use externality term, i.e.  
𝑆𝑗,2,𝑘
𝑛𝑀 = 𝑆2̅�𝑋𝑗|𝑍 = 𝑧𝑘� ∀𝑛 ∈ {𝑂,𝐶}, we can write 𝑐𝑗,2,𝑘

𝑛𝑀 = ℎ�2�𝑋,𝑉�2|𝑍 = 𝑧𝑘�, 𝑅𝑗,2,𝑘
𝑛𝑀 = 𝑅�2,𝑘�𝑦2,𝑉�2,𝑋𝑗|𝑍 = 𝑧𝑘�, and 

𝑟𝑗,2,𝑘
𝑛𝑀 = �̅�2,𝑘�𝑉�2,𝑋𝑗|𝑍 = 𝑧𝑘� ∀𝑛 ∈ {𝑂,𝐶}. 
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period ∀𝑛 ∈ {𝑂,𝐶} if state k occurs.  Tenant j’s numeraire good consumption in competitive 
equilibrium is 𝑐𝑗,1

𝑛𝑀∗ = ℎ� �1, 𝑆1�𝑋𝑗,𝑋�1𝑛𝑀
∗� ,𝑉�1� = ℎ1�𝑋𝑗,𝑉�1,𝑋�1𝑛𝑀

∗� in the first period and 
𝑐𝑗,2,𝑘
𝑛𝑀 ∗ = ℎ� �1, 𝑆2,𝑘�𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗�,𝑉�2� = ℎ2,𝑘�𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗,𝑉�2� in the second period 

∀𝑛 ∈ {𝑂,𝐶} when state k occurs.  The competitive equilibrium rental rates at location 𝑋𝑗 in the 
open-loop and closed-loop landlord problems are 
 

𝑅𝑗,1
𝑛𝑀∗ = 𝑅1�𝑦1,𝑉�1,𝑋𝑗,𝑋�1𝑛𝑀

∗� = 𝑦1 − 𝑇�𝑋𝑗� − ℎ1�𝑋𝑗 ,𝑋�1𝑛𝑀
∗,𝑉�1�, 

 
𝑅𝑗,2,𝑘
𝑛𝑀 ∗ = 𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗� = 𝑦2 − 𝑇�𝑋𝑗� − ℎ2,𝑘�𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗,𝑉�2�, 

 
𝑟𝑗,1
𝑛𝑀∗ = 𝑟1�𝑉�1,𝑋𝑗,𝑋�1𝑛𝑀

∗� = Π�𝑋𝑗� − ℎ1�𝑋𝑗,𝑋�1𝑛𝑀
∗,𝑉�1�, 

 
 and  
 

𝑟𝑗,2,𝑘
𝑛𝑀 ∗ = 𝑟2,𝑘�𝑉�2,𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗� = Π�𝑋𝑗� − ℎ2,𝑘�𝑋𝑗,𝑋�1𝑛𝑀

∗,𝑋�2,𝑘
𝑛𝑀∗,𝑉�2� ∀𝑛 ∈ {𝑂,𝐶}. 

 
In competitive equilibrium, the agricultural and urban rental rates that the landowner perceives at 
location 𝑋𝑖 are what actually exist at location 𝑋𝑖. 

 
In contrast, the social planner recognizes that the net land use externality varies with the amount 
of urban space.  As a consequence, the equilibrium consumption of the numeraire good for 
tenant j in period t and state k in the social planner problem is a function of tenant location and 
the amount of urban land:  𝑐𝑗,1

𝑛𝑃 = ℎ��1, 𝑆1�𝑋𝑗,𝑋�1𝑛𝑃�,𝑉�1� = ℎ1�𝑋,𝑋�1𝑛𝑃,𝑉�1�  and 𝑐𝑗,2,𝑘
𝑛𝑃 =

ℎ� �1, 𝑆2,𝑘�𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘
𝑛𝑃�,𝑉�2� = ℎ2,𝑘�𝑋,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃 ,𝑉�2� ∀𝑛 ∈ {𝑂,𝐶}.  Therefore, the following 
urban and agricultural rental rates exist in the social planner problem:  
 

𝑅𝑗,1
𝑛𝑃 = 𝑅1�𝑦1,𝑉�1,𝑋𝑗,𝑋�1𝑛𝑃� = 𝑦1 − 𝑇�𝑋𝑗� − ℎ1�𝑋𝑗 ,𝑋�1𝑛𝑃,𝑉�1�, 

 
𝑅𝑗,2,𝑘
𝑛𝑃 = 𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃� = 𝑦2 − 𝑇�𝑋𝑗� − ℎ2,𝑘�𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘
𝑛𝑃 ,𝑉�2�, 

 
𝑟𝑗,1
𝑛𝑃 = 𝑟1�𝑉�1,𝑋𝑗,𝑋�1𝑛𝑃� = Π�𝑋𝑗� − ℎ1�𝑋𝑗,𝑋�1𝑛𝑃,𝑉�1�, 

 
 and  
 

𝑟𝑗,2,𝑘
𝑛𝑃 = 𝑟2,𝑘�𝑉�2,𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃� = Π�𝑋𝑗� − ℎ2,𝑘�𝑋𝑗,𝑋�1𝑛𝑃,𝑋�2,𝑘
𝑛𝑃 ,𝑉�2� ∀𝑛 ∈ {𝑂,𝐶}.11

 
 

Determining the Euler Conditions.  The mathematical specifications of the problems described in 
Section V can be found by substituting the agricultural and urban rental rates into the open-loop 

                                                           
11 Because the random variable Z is in the second period net land use externality term, i.e. 
𝑆𝑗,2,𝑘
𝑛𝑃 = 𝑆2�𝑋𝑗 ,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃|𝑍 = 𝑧𝑘�, we can write 𝑐𝑗,2,𝑘
𝑛𝑃 = ℎ2�𝑋,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃,𝑉�2|𝑍 = 𝑧𝑘�, 
𝑅𝑗,2,𝑘
𝑛𝑃 = 𝑅2�𝑦2,𝑉�2,𝑋𝑗 ,𝑋�1𝑛𝑃,𝑋�2,𝑘

𝑛𝑃|𝑍 = 𝑧𝑘�, and 𝑟𝑗,2,𝑘
𝑛𝑃 = 𝑟2�𝑉�2,𝑋𝑗,𝑋�1𝑛𝑃 ,𝑋�2,𝑘

𝑛𝑃|𝑍 = 𝑧𝑘�. 
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and closed-loop problems defined in Section V, i.e. expressions (2) - (9).  The closed-loop 
landowner profit-maximization problem becomes  
 

𝐖𝐂𝐌 =
max
𝑋�1𝐶𝑀

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑅�1�𝑦1,𝑉�1,𝑋� 

𝑋�1𝐶𝑀

0
𝑑𝑋 + � �̅�1�𝑉�1, X�

𝐴

𝑋�1
𝐶𝑀

𝑑𝑋

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑀 �� 𝑅�2,𝑘�𝑦2,𝑉�2,𝑋�

𝑋�2,𝑘
𝐶𝑀

0
𝑑𝑋 + � �̅�2,𝑘�𝑉�2,𝑋�𝑑𝑋

𝐴

𝑋�2,𝑘
𝐶𝑀

�

⎭
⎪⎪
⎬

⎪⎪
⎫

 

 
𝑠. 𝑡.𝑋�2,𝑘

𝐶𝑀 ≥ 𝑋�1𝐶𝑀 ∀𝑘 ∈ {𝐿,𝐻}. 
 
The open-loop landowner profit-maximization problem becomes  
 

𝐖𝐎𝐌 =
max

𝑋�1𝑂𝑀,𝑋�2𝑂𝑀

⎩
⎪
⎨

⎪
⎧ � 𝑅�1�𝑦1,𝑉�1,𝑋� 

𝑋�1𝑂𝑀

0
𝑑𝑋 + � �̅�1�𝑉�1,𝑋�

𝐴

𝑋�1
𝑂𝑀

𝑑𝑋

+𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

�� 𝑅�2,𝑘�𝑦2,𝑉�2,𝑋�
𝑋�2𝑂𝑀

0
𝑑𝑋 + � �̅�2,𝑘�𝑉�2,𝑋�

𝐴

𝑋�2
𝑂𝑀

𝑑𝑋�
⎭
⎪
⎬

⎪
⎫

 

 
𝑠. 𝑡.𝑋�2𝑂𝑀 ≥ 𝑋�1𝑂𝑀. 

 
The closed-loop social planner problem becomes 
 

𝐖𝐂𝐏 =
max
𝑋�1𝐶𝑃

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑅1�𝑦1,𝑉�1,𝑋,𝑋�1𝐶𝑃� 

𝑋�1𝐶𝑃

0
𝑑𝑋 + � 𝑟1�𝑉�1,𝑋,𝑋�1𝐶𝑃�

𝐴

𝑋�1
𝐶𝑃

𝑑𝑋 +

𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

max
𝑋�2,𝑘
𝐶𝑃 �� 𝑅2,𝑘�𝑦2,𝑉�2,𝑋,𝑋�1𝐶𝑃,𝑋�2,𝑘

𝐶𝑃�
𝑋�2,𝑘
𝐶𝑃

0
𝑑𝑋 + � 𝑟2,𝑘�𝑉�2,𝑋,𝑋�1𝐶𝑃,𝑋�2,𝑘

𝐶𝑃�𝑑𝑋
𝐴

𝑋�2,𝑘
𝐶𝑃

�

⎭
⎪⎪
⎬

⎪⎪
⎫

 

 
𝑠. 𝑡.𝑋�2,𝑘

𝐶𝑃 ≥ 𝑋�1𝐶𝑃 ∀𝑘 ∈ {𝐿,𝐻}. 
 

The open-loop social planner problem becomes  
 

𝐖𝐎𝐏 =
max

𝑋�1𝑂𝑃,𝑋�2𝑂𝑃

⎩
⎪
⎨

⎪
⎧ � 𝑅1�𝑦1,𝑉�1,𝑋,𝑋�1𝑂𝑃� 

𝑋�1𝑂𝑃

0
𝑑𝑋 + � 𝑟1�𝑉�1,𝑋,𝑋�1𝑂𝑃�

𝐴

𝑋�1
𝑂𝑃

𝑑𝑋 +

𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

�� 𝑅2,𝑘�𝑦2,𝑉�2,𝑋,𝑋�1𝑂𝑃,𝑋�2𝑂𝑃�
𝑋�2𝑂𝑃

0
𝑑𝑋 + � 𝑟2,𝑘�𝑉�2,𝑋,𝑋�1𝑂𝑃,𝑋�2𝑂𝑃�

𝐴

𝑋�2
𝑂𝑃

𝑑𝑋�
⎭
⎪
⎬

⎪
⎫

 

 
𝑠. 𝑡.𝑋�2𝑂𝑃 ≥ 𝑋�1𝑂𝑃. 
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By substituting the landlord’s urban and agricultural rental rates into expressions (4), (6), and 
(8), I find the specifications of the closed-loop landowner profit-maximization problem with 
urban growth boundaries, location-dependent development fees, and location-independent 
development fees, respectively.  Similarly, I substitute these rental rates into expressions (5), (7), 
and (9), to find the specifications of the open-loop landlord problem with urban growth 
boundaries, location-dependent development fees, and location-independent development fees, 
respectively.  These specifications are given in the appendix.  Because the policy question that I 
address is of little relevance in cases where corner solutions are optimal, I restrict attention to 
internal solutions in all cases. 
 
In order to obtain each problem’s Euler conditions, I rewrite it as a Lagrangian function as 
depicted in the appendix.  The key difference between the open-loop problems and the closed-
loop problems is the role of the Lagrange multiplier.  In the open-loop problems, the Lagrange 
multiplier is the expected present value of the additional municipality-wide landlord rent gained 
if the irreversibility constraint is relaxed one unit.  According to the Kuhn-Tucker conditions, the 
shadow value on the irreversibility constraint is positive when the irreversibility constraint binds, 
and zero when it does not.  In the closed-loop problem, the irreversibility constraint is 
conditional on the realized second period state 𝑘 ∈ {𝐿,𝐻}.  The closed-loop Lagrange multiplier 
in state k is the additional total rent gained if the irreversibility constraint is relaxed one unit and 
state k is realized.  According to the Kuhn-Tucker conditions, the shadow value on the 
irreversibility constraint when state k is realized is positive when the irreversibility constraint 
binds in state k, and zero when it does not.  As a consequence of this difference, the Euler 
conditions for the open-loop problems are found by solving the Lagrangian in the traditional 
manner, whereas the Euler conditions for the closed-loop problems are found by solving 
recursively.  
 
An additional step is required to solve for the Euler conditions of the landlord problems.  
Because the landlord treats the net land use externality at each 𝑋𝑗 as constant with respect to the 
amount of urban land, while tenants do not, the final stage in solving for the competitive 
equilibrium Euler conditions is to replace the landlord rental rates, 𝑅𝑗,𝑡,𝑘

𝑛𝑀  and 𝑟𝑗,𝑡,𝑘
𝑛𝑀 , with those of 

the social planner, 𝑅𝑗,𝑡,𝑘
𝑛𝑃  and 𝑟𝑗,𝑡,𝑘

𝑛𝑃 , in the first order conditions of the landlord problems. 
 
Solving for the difference between private and social values of information.  For each decision 
maker, the value of information is obtained by subtracting the open-loop value function from the 
closed-loop value function.  The difference between the private and social values of information 
is greater than or equal to zero due to the public good nature of oak woodland amenities.  
     
VII. Privately and Socially Optimal Equilibria 
 
This section discusses the competitive equilibria and social optima obtained using the procedure 
detailed in the previous section.  First, it discusses the Euler conditions, which are derived from 
the first-order conditions of the Lagrangian functions using the procedure detailed in Section VI.  
The appendix displays the Euler conditions for the open-loop and closed-loop social planner and 
landlord problems without land-use policies and the Euler conditions for the open-loop and 
closed-loop landlord problems with the modeled land use polices: urban growth boundaries, 
location-independent development fees, and location-dependent development fees.  Second, 
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using these Euler conditions, this section derives three propositions about the relative size of 
urban land in each of the four models without land use policies.  Third, this section derives the 
sufficient second-order conditions for a unique global maximum, and discusses their 
implications. 
  
First Order Conditions.  The first-order conditions differ across the four models without land use 
policies.  As a consequence, the location of the landlord who is indifferent between renting for 
agricultural or urban purposes differs across the four models. 
 
Open-loop competitive equilibria.   
There are two potential solution regimes for the open-loop landlord problem, which are 
differentiated by whether or not the irreversibility constraint binds.  The irreversibility constraint 
binds if and only if 𝑋�2𝑂𝑀

∗ = 𝑋�1𝑂𝑀
∗.   

 
The Euler conditions for the open-loop landlord problem imply that the amount of urban land 
should increase until the expected value of the marginal unit of urban land equals the expected 
value of the marginal unit of oak woodland.  If the irreversibility constraint is non-binding, the 
marginal landlord in the first period is the landlord for whom the rent that she can charge her 
tenant in the first period is equal across land uses, or 
𝑅1�𝑦1,𝑉�1,𝑋�1𝑂𝑀

∗,𝑋�1𝑂𝑀
∗� =  𝑟1�𝑉�1,𝑋�1𝑂𝑀

∗,𝑋�1𝑂𝑀
∗�.  The marginal landlord in the second period is 

the landlord for whom the expected amount of rent that she can charge her tenant in the second 
period is equal across land uses, or ∑ 𝑝𝑘𝑘∈[𝐿,𝐻] ∗ 𝑅2,𝑘�𝑦2,𝑉�2,𝑋�2𝑂𝑀

∗,𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗� = ∑ 𝑝𝑘𝑘∈[𝐿,𝐻] ∗
𝑟2,𝑘�𝑉�2,𝑋�2𝑂𝑀

∗,𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗�.  If the irreversibility constraint binds, the marginal landowner is the 
landlord for whom the expected present value of rent that she can charge her tenant in both 
periods is equal across land uses; this marginal landlord is characterized by the equality of her 
income gain in the first period from developing her land and her expected income loss in the 
second period from not being able to return her land to agricultural use, or 
𝑅1�𝑦1,𝑉�1,𝑋�1𝑂𝑀

∗,𝑋�1𝑂𝑀
∗� + 𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] ∗ 𝑅2,𝑘�𝑦2,𝑉�2,𝑋�2𝑂𝑀

∗,𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗� =
𝑟1�𝑉�1,𝑋�1𝑂𝑀

∗,𝑋�1𝑂𝑀
∗� + 𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] ∗ 𝑟2,𝑘�𝑉�2,𝑋�2𝑂𝑀

∗,𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗� where 𝑋�2𝑂𝑀
∗ = 𝑋�1𝑂𝑀

∗. 
 
Open-loop social optima.  
The Euler conditions for the open-loop social planner problem differ from the Euler conditions 
for the open-loop landlord problem due to the inclusion of the marginal external cost of urban 
development.  The marginal external cost of urban development has three components in the 
open-loop social planner problem: 
 

𝐶1𝑂𝑃 = 𝐶1�𝑋�1𝑂𝑃
∗� = ∫ 𝜕𝑅1�𝑦1,𝑉�1,𝑋𝑖,𝑋�1�

𝜕𝑋�1

𝑋�1
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟1�𝑉�1,𝑋𝑖,𝑋�1� 

𝜕𝑋�1

𝐴
𝑋�1

𝑑𝑋𝑖 =

∫
𝜕𝑉
𝜕𝑆1

�ℎ1�𝑋𝑖,𝑋�1,𝑉�1�,1,𝑆1(𝑋𝑖,𝑋�1)�
𝜕𝑉
𝜕𝐶1

�ℎ1�𝑋𝑖,𝑋�1,𝑉�1�,1,𝑆1(𝑋𝑖,𝑋�1)�

𝜕𝑆1
𝜕𝑋�1

𝐴
0 𝑑𝑋𝑖, 
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𝐺𝑘𝑂𝑃 = 𝐺𝑘�𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� = ∫ 𝜕𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑖,𝑋�1,𝑋�2�
𝜕𝑋�1

𝑋�2
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟2,𝑘2�𝑉�2,𝑋𝑖,𝑋�1,𝑋�2� 

𝜕𝑋�1

𝐴
𝑋�2

𝑑𝑋𝑖 =

∫
𝜕𝑉
𝜕𝑆2,𝑘

�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘(𝑋𝑖,𝑋�1,𝑋�2)�
𝜕𝑉

𝜕𝐶2,𝑘
�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘(𝑋𝑖,𝑋�1,𝑋�2)�

𝜕𝑆2,𝑘

𝜕𝑋�1

𝐴

0
𝑑𝑋𝑖, 

 
and 
 

𝐶2,𝑘
𝑂𝑃 = 𝐶2,𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗� = ∫ 𝜕𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑖,𝑋�1,𝑋�2�

𝜕𝑋�2

𝑋�2
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟2,𝑘�𝑉�2,𝑋𝑖,𝑋�1,𝑋�2� 

𝜕𝑋�2

𝐴
𝑋�2

𝑑𝑋𝑖 =

∫
𝜕𝑉

𝜕𝑆2,𝑘
�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘(𝑋𝑖,𝑋�1,𝑋�2)�

𝜕𝑉
𝜕𝐶2,𝑘

�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘(𝑋𝑖𝑋,𝑋�1,𝑋�2)�

𝜕𝑆2,𝑘
𝜕𝑋�2

𝑑𝑋𝑖
𝐴
0 . 

. 
 
The first term 𝐶1�𝑋�1𝑂𝑃

∗� is the marginal external cost of first period urban development on total 
(municipality-wide) first period rents, or the sum of the marginal changes in rent ∀𝑋𝑖 ∈ [𝑂,𝐴] 
due to the change in the net land use externality in period 1 if the amount of urban area expands 
by one unit in period 1.  𝐺𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗� is the marginal external cost of first period urban 

development on total second period rents in state k resulting from the cumulative environmental 
effect of development, or the sum of the marginal changes in rent ∀𝑋𝑖 ∈ [𝑂,𝐴] due to the change 
in the net land use externality in period 2 through the cumulative effect of development if the 
amount of urban area expands by one unit in period 1 and state k occurs.  Unlike the other two 
components, the interpretation of 𝐶2,𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗� depends on whether the irreversibility 

constraint binds because 𝐶2,𝑘�𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� is captured in the Lagrange multiplier 𝜆𝑂𝑃∗ where 
 
𝜆𝑂𝑃∗ = 𝐵 � 𝑝𝑘

𝑘∈[𝐿,𝐻]

× 

�𝑟2,𝑘�𝑉�2,𝑋�2𝑂𝑃
∗,𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗� − 𝑅2,𝑘�𝑦2,𝑉�2,𝑋�2𝑂𝑃

∗,𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� − 𝐶2,𝑘�𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� �. 
 
If the irreversibility constraint is non-binding then 𝐶2,𝑘

𝑂𝑃 is the marginal external cost of second 
period urban development on total second period rents in state k, or the sum of the marginal 
changes in rent ∀𝑋𝑖 ∈ [𝑂,𝐴] due to the change in the net land use externality in period 2 if the 
amount of urban area expands by one unit in period 2 and state k occurs.  If the irreversibility 
constraint is binding, 𝐶2,𝑘

𝑂𝑃 is the marginal external cost of first period urban development on total 
second period rents if state k occurs resulting from the irreversibility of urban development, or 
the sum of the marginal changes in rent ∀𝑋𝑖 ∈ [𝑂,𝐴] due to the change in the net land use 
externality in period 2 through the irreversibility of development if the amount of urban area 
expands by one unit in period 1 and state k occurs.  In the appendix, I derive these marginal 
external cost components and prove that each of them is non-positive. 
 
Because the interpretation of 𝐶2,𝑘

𝑂𝑃 depends on whether the irreversibility constraint binds, the 
expected marginal external cost of first period urban development and the expected marginal 
external cost of second period urban development do also.  If the irreversibility constraint is non-
binding, the expected marginal external cost of first period urban development is 𝐶1𝑂𝑃 +
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 𝐵∑ 𝑝𝑘𝐺𝑘𝑂𝑃𝑘∈[𝐿,𝐻]  and the expected marginal external cost of second period urban development 
is ∑ 𝑝𝑘𝑘∈[𝐿,𝐻] 𝐶2,𝑘

𝑂𝑃.  If the irreversibility constraint is binding, the expected marginal external cost 
of first period urban development is 𝐶1𝑂𝑃 +  𝐵∑ 𝑝𝑘𝐺𝑘𝑂𝑃 𝑘∈[𝐿,𝐻] + 𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] 𝐶2,𝑘

𝑂𝑃.  There is no 
marginal external cost of second period urban development because there is no second period 
urban development. 
 
This discussion leads to the following proposition, which is proved formally in the appendix. 
 
Proposition 1: In each period, the socially optimal amount of urban land is always less than or 
equal to the privately optimal amount under open-loop control. 
 
Closed-loop competitive equilibria.  
There are four potential solution regimes in the closed-loop landlord problem, which are 
differentiated by whether or not the irreversibility constraints in state H and state L bind.  The 
irreversibility constraint in state k binds if and only if 𝑋�1𝐶𝑀

∗ = 𝑋�2,𝑘
𝐶𝑀∗. 

 
The Euler conditions for the closed-loop landlord problem imply that the amount of urban land 
in the first period should increase until the expected value of the marginal unit of urban land 
equals the expected value of the marginal unit of oak woodland.  If the irreversibility constraint 
is non-binding in both states H and L, the marginal landlord in the first period is the landlord for 
whom the rent that she can charge her tenant in the first period is equal across land uses, or 
𝑅1�𝑦1,𝑉�1,𝑋�1𝐶𝑀

∗,𝑋�1𝐶𝑀
∗� =  𝑟1�𝑉�1,𝑋�1𝐶𝑀

∗,𝑋�1𝐶𝑀
∗�.  Given that the true state of nature is known in 

the second period, the marginal landowner in the second period is the landlord for whom the rent 
that she can charge her tenant is equal across land uses in the realized state, or 
𝑅2,𝑘�𝑦2,𝑉�2,𝑋�2,𝑘

𝐶𝑀∗,𝑋�1𝐶𝑀
∗ ,𝑋�2,𝑘

𝐶𝑀∗� = 𝑟2,𝑘�𝑉�2,𝑋�2,𝑘
𝐶𝑀∗ ,𝑋�1𝐶𝑀

∗,𝑋�2,𝑘
𝐶𝑀∗� ∀𝑘 ∈ {𝐿,𝐻}.  If the irreversibility 

constraint binds in both states, the marginal landowner is the landlord for whom the expected 
present value of rent that she can charge her tenant in both periods is equal across land-uses, or 
𝑅1�𝑦1,𝑉�1,𝑋�1𝐶𝑀

∗,𝑋�1𝐶𝑀
∗� + 𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] 𝑅2,𝑘�𝑦2,𝑉�2,𝑋�2,𝑘

𝐶𝑀∗,𝑋�1𝐶𝑀
∗,𝑋�2,𝑘

𝐶𝑀∗� = 𝑟1�𝑉�1,𝑋�1𝐶𝑀
∗,𝑋�1𝐶𝑀

∗� +
𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] 𝑟2,𝑘�𝑉�2,𝑋�2,𝑘

𝐶𝑀∗,𝑋�1𝐶𝑀
∗,𝑋�2,𝑘

𝐶𝑀∗� where 𝑋�1𝐶𝑀
∗ = 𝑋�2,𝐿

𝐶𝑀∗ = 𝑋�2,𝐻
𝐶𝑀∗. 

 
Proposition 2:  Regardless of which state is realized in the second period, the competitive 
equilibrium amounts of urban land are identical under open-loop and closed-loop control in 
each period.  
 
The proof of the proposition has several steps, detailed in the appendix.  The intuition behind this 
result is that landowners do not face uncertainty in their decision making process because 
agricultural profits are unaffected by climate change, landowners do not account for the effect of 
their land use decisions on other landowners’ welfare or land use decisions, and agricultural and 
urban tenants are equally affected by the net land use externality.  As a consequence, landowners 
gain no additional valuable information, i.e. information that has relevance to their decision 
making process, under closed-loop control than under open-loop control. 
 
Closed-loop social optima.  
The Euler conditions for the closed-loop social planner problem differ from the Euler conditions 
for the closed-loop landlord problem due to the inclusion of the marginal external cost of urban 
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development.  The marginal external cost of urban development has three components in the 
closed-loop social planner problem: 

 

𝐶1𝐶𝑃 = 𝐶1�𝑋�1𝐶𝑃
∗� = ∫ 𝜕𝑅1�𝑦1,𝑉�1,𝑋𝑖,𝑋�1�

𝜕𝑋�1

𝑋�1
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟1�𝑉�1,𝑋𝑖,𝑋�1�

𝜕𝑋�1

𝐴
𝑋�1

𝑑𝑋𝑖 =

∫
𝜕𝑉
𝜕𝑆1

�ℎ1�𝑋𝑖,𝑋�1,𝑉�1�,1,𝑆1(𝑋𝑖,𝑋�1)�
𝜕𝑉
𝜕𝐶1

�ℎ1�𝑋𝑖,𝑋�1,𝑉�1�,1,𝑆1(𝑋𝑖,𝑋�1)�

𝜕𝑆1
𝜕𝑋�1

𝐴
0 𝑑𝑋𝑖, 

𝐺𝑘𝐶𝑃 = 𝐺𝑘�𝑋�1𝐶𝑃
∗,𝑋�2,𝑘

𝐶𝑃∗� = ∫ 𝜕𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑖,𝑋�1,𝑋�2,𝑘�
𝜕𝑋�1

𝑋�2,𝑘
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟2,𝑘�𝑉�2,𝑋𝑖,𝑋�1,𝑋�2,𝑘�

𝜕𝑋�1
𝑑𝑋𝑖 =𝐴

𝑋�2,𝑘

∫
𝜕𝑉

𝜕𝑆2,𝑘
�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘��

𝜕𝑉
𝜕𝐶2,𝑘

�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘��

𝜕𝑆2,𝑘
𝜕𝑋�1

𝐴
0 𝑑𝑋𝑖,   

and 

𝐶2,𝑘
𝐶𝑃 = 𝐶2,𝑘�𝑋�1𝐶𝑃

∗,𝑋�2,𝑘
𝐶𝑃∗� = ∫ 𝜕𝑅2,𝑘�𝑦2,𝑉�2,𝑋𝑖,𝑋�1,𝑋�2,𝑘�

𝜕𝑋�2,𝑘

𝑋�2,𝑘
0 𝑑𝑋𝑖 + ∫ 𝜕𝑟2,𝑘�𝑉�2,𝑋𝑖,𝑋�1,𝑋�2,𝑘�

𝜕𝑋�2,𝑘

𝐴
𝑋�2,𝑘

𝑑𝑋𝑖 =

∫
𝜕𝑉

𝜕𝑆2,𝑘
�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘��

𝜕𝑉
𝜕𝐶2,𝑘

�ℎ2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘,𝑉�2�,1,𝑆2,𝑘�𝑋𝑖,𝑋�1,𝑋�2,𝑘��

𝜕𝑆2,𝑘
𝜕𝑋�2,𝑘

𝐴
0 𝑑𝑋𝑖.   

 
In the appendix, I derive these marginal external cost components and prove that each of them is 
non-positive.  The only difference between the components of the closed-loop and open-loop 
marginal external costs of urban development is that they are functions of different solutions for 
the amounts of urban land.  Thus, the open and closed-loop marginal external cost components 
differ in magnitude across the social planner problems except when one of two special cases 
holds: 𝑋�1𝑂𝑃

∗ = 𝑋�1𝐶𝑃
∗ and 𝑋�2𝑂𝑃

∗ = 𝑋�2,𝐻
𝐶𝑃 ∗ = 𝑋�2,𝐿

𝐶𝑃∗ or when all three components of the marginal 
external cost of urban development are constant with respect to the amount of urban land in all 
periods and states.  
 
As in the open-loop social planner problem, the interpretation of 𝐶2,𝑘

𝐶𝑃 depends on the value of the 
corresponding Lagrange multiplier 𝜆𝑘𝐶𝑃

∗.  However, unlike under open-loop control, the 
Lagrange multiplier is state dependent under closed-loop control.  As a consequence, the 
expected marginal external cost of first period urban development and the marginal external cost 
of second period urban development depend on which irreversibility constraints bind.  If the 
irreversibility constraints for both period 2 states are non-binding, then the expected marginal 
external cost of first period urban development is 𝐶1𝐶𝑃 +  𝐵∑ 𝑝𝑘𝐺𝑘𝐶𝑃 𝑘∈[𝐿,𝐻]  and 𝐶2,𝑘

𝐶𝑃 is the 
marginal external cost of second period urban development in state k.  If only the irreversibility 
constraint in state H binds then there is no development in period 2 if state H is realized, the 
expected marginal external cost of first period urban development is 𝐶1𝐶𝑃 +  𝐵∑ 𝑝𝑘𝐺𝑘𝐶𝑃 +𝑘∈[𝐿,𝐻]
𝐵𝑝𝐻𝐶2,𝐻

𝐶𝑃  , and the marginal external cost of second period urban development in state L is 𝐶2,𝐿
𝐶𝑃.  

If only the irreversibility constraint in state L binds then there is no development in period 2 if 
state L is realized, the expected marginal external cost of first period urban development is 
𝐶1𝐶𝑃 +  𝐵∑ 𝑝𝑘𝐺𝑘𝐶𝑃 + 𝐵𝑝𝐿𝐶2,𝐿

𝐶𝑃
𝑘∈[𝐿,𝐻] , and the marginal external cost of second period urban 

development in state H is 𝐶2,𝐻
𝐶𝑃 .  If the irreversibility constraint is binding in both states then there 
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is no development in period 2 and the expected marginal external cost of first period urban 
development is 𝐶1𝐶𝑃 +  𝐵∑ 𝑝𝑘𝐺𝑘𝐶𝑃 𝑘∈[𝐿,𝐻] + 𝐵∑ 𝑝𝑘𝑘∈[𝐿,𝐻] 𝐶2,𝑘

𝐶𝑃. 
 
This discussion leads to the following proposition, which is proved formally in the appendix. 
 
Proposition 3: In each period, the socially optimal amount of urban land is always less than or 
equal to the privately optimal amount under closed-loop control. 
 
Second order conditions.  If specific assumptions hold, the solutions to the Euler conditions for 
the four models depicted in Table 3 are unique global maxima.  Because there are no equality 
constraints in these problems, there exists a global maximum in each open-loop problem if the 
Kuhn-Tucker (KT) conditions and the constraint qualification (CQ) condition for binding 
constraints hold for some 𝑋�1𝑂𝑚

∗ and 𝑋�2,𝑘
𝑂𝑚∗, each inequality constraint is a quasiconvex function, 

and the value function is concave.  Similarly, there exists a global maximum in each closed-loop 
problem if the KT conditions and the CQ condition hold for some 𝑋�1𝐶𝑚

∗, 𝑋�2,𝐿
𝐶𝑚∗, and 𝑋�2,𝐻

𝐶𝑚∗,  each 
inequality constraint is a quasiconvex function, and the value function is concave (Mass-Colell, 
Whinston, and Green, 1995).  As stated in the previous section, I restrict attention to interior 
solutions for expositional convenience.  As a consequence, the KT and the CQ conditions hold 
for each of the four problems. 
 
The irreversibility constraints are convex, implying that they are quasiconvex.  By rewriting 
them, as 𝑔�𝑋�1𝑂𝑚

∗,𝑋�2𝑂𝑚
∗� = 𝑋�1𝑂𝑚

∗ − 𝑋�2𝑂𝑚
∗ ≤ 0 in the open-loop problems and 

𝑔𝑘�𝑋�1𝐶𝑚
∗,𝑋�2,𝑘

𝐶𝑚∗� = 𝑋�1𝐶𝑚
∗ − 𝑋�2,𝑘

𝐶𝑚∗ ≤ 0 in the closed-loop problems, it is easy to see that the 
second derivatives of all of the irreversibility constraints equal zero.  Consequently, all elements 
in each constraint’s Hessian matrix equal zero.  This implies that each matrix is positive semi-
definite, and therefore, each constraint is convex.  Because a convex function is quasiconvex, all 
irreversibility constraints are quasiconvex.  
 
The objective functions in the open-loop and closed-loop landlord and social planner problems 
are all strictly concave if certain restrictions hold.  For convenience, I restrict attention to strictly 
concave objective functions, which obviously ensures concavity.  The objective function is 
strictly concave when its Hessian matrix is negative definite.  The Hessian matrix for the open-
loop landlord problem is 
 

�
− �

𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
� 0

0 −𝐵 �
𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
�
�, 

 
and the Hessian matrix for the closed-loop landlord problem is  
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⎣
⎢
⎢
⎢
⎢
⎡− �

𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
� 0 0

0 −𝐵𝑃𝐻 �
𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
� 0

0 0 −𝐵𝑃𝐿 �
𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
�⎦
⎥
⎥
⎥
⎥
⎤

. 

 
Because the closed-loop problem is solved recursively, −�𝜕𝑇 

𝜕𝑋
+

𝜕Π
𝜕𝑋
� < 0 must hold in addition to 

the Hessian matrix being negative definite in order for the objective functions to be strictly 
concave.  In the open-loop and closed-loop landlord problems, the objective functions are strictly 
concave because the sum of the derivative of commuter cost with respect to location and the 
derivative of agricultural profit with respect to location, i.e. 𝜕𝑇(𝑋) 

𝜕𝑋
+ 𝜕Π(𝑋)

𝜕𝑋
  ∀𝑋𝑗, is greater than 

zero and the probability of state H occurring is greater than zero and less than one, i.e. 0 < 𝑝𝐻 <
1.    
 
In the open-loop and closed-loop social planner problems, the necessary and sufficient 
conditions for the Hessian matrix to be negative definite are more complicated.  The Hessian 
matrix for the open-loop social planner problem is 
 

⎣
⎢
⎢
⎢
⎢
⎡− �

𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋
� +

𝜕𝐶1
𝜕𝑋�1

+ 𝐵 � 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻}

𝐵 � 𝑝𝑘
𝜕𝐶2,𝑘

𝜕𝑋�1𝑘∈{𝐿,𝐻}

𝐵 � 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�2𝑘∈{𝐿,𝐻}

−𝐵�
𝜕𝑇 

𝜕𝑋
+
𝜕Π
𝜕𝑋

− � 𝑝𝑘
𝜕𝐶2,𝑘

𝜕𝑋�1𝑘∈{𝐿,𝐻}

�
⎦
⎥
⎥
⎥
⎥
⎤

 

 
where 𝐵∑ 𝑝𝑘

𝜕𝐶2,𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} =  𝐵∑ 𝑝𝑘

𝜕𝐺𝑘
𝜕𝑋�2𝑘∈{𝐿,𝐻}  by Young’s Theorem.  There is a pair of necessary 

and sufficient conditions for a strictly concave objective function in the open-loop social planner 
problem: 
 

𝜕𝐶1
𝜕𝑋�1

+ 𝐵 � 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻}

−
𝜕𝑇 
𝜕𝑋

−
𝜕Π
𝜕𝑋

< 0 

 
and 
 

�𝜕𝐶1
𝜕𝑋�1

+ 𝐵∑ 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
� �∑ 𝑝𝑘

𝜕𝐶2,𝑘
𝜕𝑋�2𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
� > 𝐵 �∑ 𝑝𝑘

𝜕𝐶2,𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} �

2
. 

 
The first condition states that the marginal change in the expected present value of total rent with 
respect to the amount of urban land in the first period must decline in the amount of urban land 
in the first period.  The latter condition states that the product of the rate of change described in 
the former condition and the change in the marginal change in the expected present value of total 
rent with respect to the amount of urban land in the second period resulting from an increase in 
the amount of urban land in the second period must be greater than the square of the change in 
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the marginal change in the expected present value of total rent with respect to the amount of 
urban land in the second period resulting from an increase in the amount of urban land in the first 
period.  In other words, this condition states that the product of the expected within period effects 
of development must be greater than the product of the expected between period effects of 
development. 
 
The Hessian matrix for the closed-loop social planner problem is  
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡− �

𝜕𝑇 
𝜕𝑋

+
𝜕Π
𝜕𝑋

� +
𝜕𝐶1
𝜕𝑋�1

+ 𝐵 � 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻}

𝐵𝑝𝐻
𝜕𝐶2,𝐻

𝜕𝑋�1
𝐵𝑝𝐿

𝜕𝐶2,𝐿

𝜕𝑋�1

𝐵𝑝𝐻
𝜕𝐺𝐻
𝜕𝑋�2,𝐻

−𝐵𝑃𝐻 �
𝜕𝑇 
𝜕𝑋

+
𝜕Π
𝜕𝑋

−
𝜕𝐶2,𝐻

𝜕𝑋�2,𝐻
� 0

𝐵𝑝𝐿
𝜕𝐺𝐿
𝜕𝑋�2,𝐿

0 −𝐵𝑃𝐿 �
𝜕𝑇 
𝜕𝑋

+
𝜕Π
𝜕𝑋

−
𝜕𝐶2,𝐿

𝜕𝑋�2,𝐿
�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
where 𝜕𝐺𝐻

𝜕𝑋�2,𝐻
= 𝜕𝐶2,𝐻

𝜕𝑋�1
 and 𝜕𝐺𝐿

𝜕𝑋�2,𝐿
= 𝜕𝐶2,𝐿

𝜕𝑋�1
 by Young’s Theorem.  Because the closed-loop problem is 

solved recursively, −𝐵𝑃𝑘 �
𝜕𝑇 

𝜕𝑋
+

𝜕Π
𝜕𝑋
− 𝜕𝐶2,𝑘

𝜕𝑋�2,𝑘
� < 0 ∀𝑘 ∈ {𝐿,𝐻} must hold in addition to the Hessian 

matrix being negative definitive in order for the objective functions to be strictly concave.  There 
are three necessary and sufficient conditions for strictly concave objective functions in the 
closed-loop social planner problem: 
 

𝜕𝐶1
𝜕𝑋�1

+ 𝐵∑ 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
< 0, 

 

�𝜕𝐶1
𝜕𝑋�1

+ 𝐵∑ 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
� �𝜕𝐶2,𝐻

𝜕𝑋�2,𝐻
− 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
� > 𝐵𝑝𝐻 �

𝜕𝐶2,𝐻
𝜕𝑋�1

�
2
, 

 
and 
 

𝜕𝐶1
𝜕𝑋�1

+ 𝐵∑ 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋
<

𝐵𝑝𝐻
𝜕𝐶2,𝐻
𝜕𝑋�1

𝜕𝐺𝐻
𝜕𝑋�2,𝐻

𝜕𝐶2,𝐻
𝜕𝑋�2,𝐻

−�𝜕𝑇 
𝜕𝑋+

𝜕Π
𝜕𝑋�

+
𝐵𝑝𝐿

𝜕𝐶2,𝐿
𝜕𝑋�1

𝜕𝐺𝐿
𝜕𝑋�2,𝐿

𝜕𝐶2,𝐿
𝜕𝑋�2,𝐿

−�𝜕𝑇 
𝜕𝑋+

𝜕Π
𝜕𝑋�

. 

 
The first condition is the same as in the open-loop social planner problem.  The second necessary 
and sufficient condition in the closed-loop social planner problem states that the product of the 
rate of change described in the first condition and the change in the marginal change in the 
expected present value of total rent with respect to the amount of urban land in the second period 
when state H occurs resulting from an increase in the amount of urban land in the second period 
when state H occurs must be greater than the square of the change in the marginal change in the 
expected present value of total rent with respect to the amount of urban land in the second period 
when state H occurs resulting from an increase in the amount of urban land in the first period.  
The third condition is difficult to interpret. 
 
Because many of the results in Section VIII depend on whether or not there are cumulative 
environmental externalities from urban development, I define two sets of sufficient conditions 
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from these necessary and sufficient conditions that guarantee that the objective function is 
strictly concave in all four problems.  While both sets of sufficient conditions guarantee that the 
Hessian matrix is negative definite for the open-loop and closed-loop landlord and social planner 
problems, only the strong sufficient conditions guarantee that there are zero cumulative 
environmental externalities.  Though cumulative environmental externalities and the 
irreversibility of urban development are separate land use issues, both attributes result in first 
period urban development incurring a cost in terms of lost total second period rent.  As a 
consequence, a cumulative environmental externality from urban development affects the cost of 
irreversibility in two ways.  First, it changes the magnitude of the cost of irreversibility by 
decreasing second period rents.  Second, this decrease in second period rents affects whether or 
not the irreversibility constraints bind and, hence, whether or not a cost of irreversibility is 
realized.  
 
The strong conditions are the more restrictive of the two sets of conditions.  The strong sufficient 
conditions for a unique global maximum are: 
 
(i)  

𝜕2𝑆1
𝜕𝑋�1

2 ≤ 0    (ii)  𝜕
2𝑆2,𝑘

𝜕𝑋�2,𝑘
2 ≤ 0  and  (iii)  𝜕𝑆2,𝑘

𝜕𝑋�1
= 0. 

 
These three conditions state that the first period net land use externality decreases at an 
increasing rate in the amount of urban land in the first period, the second period net land use 
externality in state k decreases at an increasing rate in the amount of urban land in the second 
period, and there is no cumulative environmental externality from development in the first 
period.  The final condition implies that 𝐺𝑘�𝑋�1𝑛𝑚,𝑋�2,𝑘

𝑛𝑚� = 0 ∀𝑘 ∈ {𝐿,𝐻}, ∀𝑛 ∈ {𝑂,𝐶}, and 
∀𝑚 ∈ {𝑀,𝑃} and that there exists a function, �̂�2,𝑘, such that 𝐶2,𝑘�𝑋�1𝑛𝑚,𝑋�2,𝑘

𝑛𝑚� = �̂�2,𝑘�𝑋�2,𝑘
𝑛𝑚� 

∀𝑘 ∈ {𝐿,𝐻}, ∀𝑛 ∈ {𝑂,𝐶}, and ∀𝑚 ∈ {𝑀,𝑃}. 
 
While the assumption of no cumulative environmental externality is analytically tractable, this 
assumption may not hold in the real world.  Therefore, I define a weaker set of five sufficient 
conditions that allow for non-zero cumulative environmental externalities.  The weak sufficient 
conditions for a unique global maximum are: 
 
(i′)  

𝜕2𝑆1
𝜕𝑋�1

2 ≤ 0    (ii′)  𝜕
2𝑆2,𝑘

𝜕𝑋�2,𝑘
2 ≤ 0    (iii′)  𝜕

2𝑆2,𝑘

𝜕𝑋�1
2 ≤ 0    (iv′)  𝜕𝑆2,𝑘

𝜕𝑋�1𝜕𝑋�2,𝑘
≤ 0 

 

(v′) 

⎩
⎪
⎨

⎪
⎧

𝜕𝐶1
𝜕𝑋�1

+ 𝐵∑ 𝑝𝑘
𝜕𝐺𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻} − 𝜕𝑇 

𝜕𝑋
− 𝜕Π

𝜕𝑋

< min �
𝐵∑ 𝑝𝑘

𝜕𝐺𝑘
𝜕𝑋�2𝑘∈{𝐿,𝐻} ∑ 𝑝𝑘

𝜕𝐶2,𝑘
𝜕𝑋�1𝑘∈{𝐿,𝐻}

∑ 𝑝𝑘
𝜕𝐶2,𝑘
𝜕𝑋�2𝑘∈{𝐿,𝐻} −𝜕𝑇 

𝜕𝑋−
𝜕Π
𝜕𝑋

,
𝐵𝑝𝐻

𝜕𝐶2,𝐻
𝜕𝑋�1

𝜕𝐺𝐻
𝜕𝑋�2,𝐻

−�𝜕𝑇 
𝜕𝑋+

𝜕Π
𝜕𝑋�+

𝜕𝐶2,𝐻
𝜕𝑋�2,𝐻

+
𝐵𝑝𝐿

𝜕𝐶2,𝐿
𝜕𝑋�1

𝜕𝐺𝐿
𝜕𝑋�2,𝐿

−�𝜕𝑇 
𝜕𝑋+

𝜕Π
𝜕𝑋�+

𝜕𝐶2,𝐿
𝜕𝑋�2,𝐿

�
⎭
⎪
⎬

⎪
⎫

. 

Conditions (i′) - (iv′) state that the net land use externality functions are decreasing at a non-
decreasing rate in the amounts of urban land in each period and future state.  Condition (v’) is a 
combination of the second necessary and sufficient condition in the open-loop social planner 
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problem and the third necessary and sufficient condition in the closed-loop social planner 
problem. 
 
VIII. Key Results 
 
While the strong sufficient conditions are intuitively appealing, the results of this paper depend 
on whether the weak or strong sufficient conditions for a unique global maximum hold.  Under 
the strong sufficient conditions, the net benefit functions are separable in their decision variables 
and the value function is quasi-concave.  As a consequence, the irreversibility effect holds 
(Freixas and Laffont, 1984).  Under the weak sufficient conditions, the irreversibility effect does 
not necessarily hold without additional assumptions.  One such assumption is that the derivative 
of the second period value function with respect to the amount of urban land in the first period is 
concave with respect to the posterior probabilities (Epstein, 1980).  Another possible assumption 
is that the open-loop social planner problem is binding (Ulph and Ulph, 1997).  I explore the 
effect of these assumptions in this section. 
 
This section is divided into two parts.  The first subsection derives a series of propositions about 
optimal land use policies under the strong sufficient conditions for a unique global maximum.  
The second subsection demonstrates that some of these results do not necessarily hold under the 
weak sufficient conditions for a unique global maximum.  Some of the results that hold under the 
strong sufficient conditions may still hold under weaker conditions depending on parameter 
values, functional forms, and/or additional conditions. 
 
Strong sufficient conditions. As proven earlier, the open-loop and closed-loop competitive 
equilibrium amounts of urban land are equal given the structure of the model.  In addition, the 
socially optimal amount of urban land in the first period is less than the corresponding 
competitive amount under both the open-loop and closed-loop assumptions.  The last comparison 
is of the open-loop and closed-loop socially optimal amounts of urban land, and this section will 
show that sign of the difference between these amounts partially depends on whether the strong 
or weak sufficient conditions hold. 
 
First and second period land use decisions in the social planner problems.   
Here I compare the socially optimal amounts of urban land in the open-loop and closed-loop 
social planner problems.  There are eight possible pairs of solution regimes for the open-loop and 
closed-loop social planner problems, identified by whether or not the irreversibility constraints 
bind.12

 

  Because the first and second period rental rates are separable in their decision variables 
when the strong sufficient conditions hold, Freixas and Laffont (1984) implies Proposition 4 and 
establishes a series of corollaries when applied to this problem. 

                                                           
12 In the appendix, I prove that 𝐶2,𝐻�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗� ≤ 𝐶2,𝐿�𝑋�1𝐶𝑃

∗,𝑋�2,𝐿
𝐶𝑃∗� is necessary for the solution to the closed-loop 

social planner problem to be binding in only state H, 𝐶2,𝐻�𝑋�1𝐶𝑃
∗,𝑋�2,𝐻

𝐶𝑃 ∗� ≥ 𝐶2,𝐿�𝑋�1𝐶𝑃
∗,𝑋�2,𝐿

𝐶𝑃∗� is necessary for the 
solution to the closed-loop social planner problem to be binding in only state L, and the sign of the difference 
between 𝐶2,𝐻�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗� and 𝐶2,𝐿�𝑋�1𝐶𝑃

∗,𝑋�2,𝐿
𝐶𝑃∗� is unknown.  Together these results imply that the closed-loop 

social planner problem has four obtainable solution regimes: binding in both, neither or only one (state H or state L) 
future state. 
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Proposition 4: Assuming that the strong sufficient conditions for a unique global maximum hold, 
the socially optimal amount of urban land in the first period under closed-loop control is less 
than or equal to the amount under open-loop control.  In other words, the irreversibility effect 
holds (Felix and Laffont, 1984).   
Corollary 4a: If the solution to the closed-loop social planner problem has one and only one 
binding irreversibility constraint, then the socially optimal amount of urban land in the first 
period under closed-loop control is less than the amount under open-loop control, assuming the 
strong sufficient conditions hold. 
Corollary 4b: If the magnitude of the marginal external cost of second period urban 
development on total second period rent is greater in state H than in state L, the socially optimal 
amount of urban land in the second period under closed-loop control is less than or equal to the 
amount under open-loop control when state H occurs and greater than or equal to the amount 
under open-loop control when state L occurs.  If the magnitude of the marginal external cost of 
second period urban development on total second period rent is less in state H than in state L, 
the socially optimal amount of urban land in the second period under closed-loop control is 
greater than or equal to the amount under open-loop control when state H occurs and less than 
or equal to the amount under open-loop control when state L. 
Corollary 4c: In the first period, the difference between the socially and privately optimal 
amounts of urban land under closed-loop control is greater than or equal to this difference 
under open-loop control. 
Corollary 4d: The socially optimal first-period urban growth boundary is equal or greater in 
magnitude under open-loop control than closed-loop control.  
 
The proposition and its corollaries are proved in the appendix.  Proposition 4 holds by results 
established in Freixas and Laffont (1984).  Corollary 4a follows because knowledge of the future 
availability of information only has value in the first period when knowing the true state would 
allow the decision maker to increase expected social welfare by restricting her first period land 
use decision, and thus expanding her second period choice set.  If all irreversibility constraints 
are non-binding or if all irreversibility constraints bind, the knowledge that future climate 
information will be available does not provide an incentive to the decision maker to change her 
first period decision.  Corollary 4b follows intuitively from the fact that the social planner 
chooses to conserve more oaks when the marginal external cost of urban development is high.  In 
closed-loop control, the social planner knows the true state in the second period and adjusts her 
decision accordingly.  In open-loop control, the social planner hedges her bets between the two 
possible states by choosing an amount of urban land in the second period in between those 
chosen by the closed-loop social planner.   Corollary 4c is implied by propositions 2 and 4, 
which together guarantee that 𝑋�1𝐶𝑀

∗ − 𝑋�1𝐶𝑃
∗ ≥ 𝑋�1𝑂𝑀

∗ − 𝑋�1𝑂𝑃
∗ under the strong sufficient 

conditions.  Last, corollary 4d follows directly from proposition 4 because the socially optimal 
urban growth boundary in period t and state k equals the socially optimal amount of urban land 
in period t and state k regardless of the type of control problem, i.e. 𝑋�𝑡,𝑘

𝑛 ∗
= 𝑋�𝑡,𝑘

𝑛𝑃∗ ∀𝑡 ∈ {1,2},𝑘 ∈
{𝐿,𝐻}, and 𝑛 ∈ {𝑂,𝐶}.  
 
Proposition 4 and its corollaries indicate that the socially optimal amount of urban land can differ 
between open-loop and closed-loop control.  As a result policymakers should account for the 
difference between private and social values of information when determining land use policy if 
the strong sufficient conditions for a unique global maximum hold.  Local policymakers should 
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pay particular attention if climate change has a wide range of potential effects on oak habitat in 
their area.  In such cases, policymakers who account for the future availability of information 
when setting land use policies, such as zoning or urban growth boundaries, prevent a greater 
amount of development than those who ignore it. 
 
Private and social values of information. 
In all four problems shown in Table 3, the value function is the present value of expected land 
rents: 
 

𝑊�𝑋�1𝑛𝑚
∗,𝑋�2,𝐻

𝑛𝑚∗,𝑋�2,𝐿
𝑛𝑚∗� = 

� 𝑅1�𝑋,𝑋�1𝑛𝑚
∗�𝑑𝑋

𝑋�1𝑛𝑚
∗

0

+ � 𝑟1�𝑋,𝑋�1𝑛𝑚
∗�𝑑𝑋

𝐴

𝑋�1
𝑛𝑚∗

+ 𝐵 � 𝑝𝑘 � � 𝑅2,𝑘�𝑋,𝑋�1𝑛𝑚
∗,𝑋�2,𝑘

𝑛𝑚∗�𝑑𝑋

𝑋�2,𝑘
𝑛𝑚∗

0

+ � 𝑟2,𝑘�𝑋,𝑋�1𝑛𝑚
∗,𝑋�2,𝑘

𝑛𝑚∗�𝑑𝑋
𝐴

𝑋�2,𝑘
𝑛𝑚∗

�
𝑘∈{𝐿,𝐻}

 

 
The private and social values of information differ due to the different equilibrium amounts of 
urban land in the two solutions.  The private value of information is the difference between the 
value function evaluated at the closed-loop and open-loop competitive equilibrium amounts of 
urban land; i.e. 𝑊�𝑋�1𝐶𝑀

∗,𝑋�2,𝐻
𝐶𝑀∗,𝑋�2,𝐿

𝐶𝑀∗� −𝑊�𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗,𝑋�2𝑂𝑀
∗�.  The social value of 

information is the difference between the value function evaluated at the closed-loop and open-
loop socially optimal amounts of urban land; i.e. 𝑊�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗,𝑋�2,𝐿

𝐶𝑃∗� −𝑊�𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗,𝑋�2𝑂𝑃
∗�.  

The difference between the social and private values of information, ∆, equals 
 

∆= �𝑊�𝑋�1𝐶𝑃
∗,𝑋�2,𝐻

𝐶𝑃 ∗,𝑋�2,𝐿
𝐶𝑃∗� −𝑊�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗,𝑋�2𝑂𝑃

∗��
− �𝑊�𝑋�1𝐶𝑀

∗,𝑋�2,𝐻
𝐶𝑀∗,𝑋�2,𝐿

𝐶𝑀∗� −𝑊�𝑋�1𝑂𝑀
∗,𝑋�2𝑂𝑀

∗,𝑋�2𝑂𝑀
∗��. 

 
The private value of information is zero because the competitive equilibrium amounts of urban 
land are the same in the two control problems.  As a consequence, the difference between the 
social and private values of information reduces to the social value of information, i.e. ∆=
𝑊�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗,𝑋�2,𝐿

𝐶𝑃∗� −𝑊�𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗,𝑋�2𝑂𝑃
∗�.  By theory, 𝑊�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗,𝑋�2,𝐿

𝐶𝑃∗� −
𝑊�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� ≥ 0 because a decision maker cannot be made worse off by new 
information.  
 
From the results in the previous subsection regarding the difference between the amounts of 
urban land in the open-loop and closed-loop social planner problems, it is possible to draw 
several conclusions about the social value of information.  First, the social value of information 
equals zero when all irreversibility constraints bind in the solutions to the open-loop and closed-
loop social planner problems because the solutions for the amount of urban land in each period 
and state are equal across the two control problems.  Second, the social value of information is 
greater than zero when no irreversibility constraints bind in the solutions to the open-loop and 
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closed-loop social planner problems and the strong sufficient conditions for a unique global 
maximum hold.  Though the socially optimal amount of urban land in the first period under 
closed-loop control equals the corresponding amount under open-loop control, the socially 
amount of urban land in the second period differs between closed-loop and open-loop control.  
Third, the social value of information is greater than zero when the open-loop social planner 
problem has a non-binding solution, the solution to the closed-loop social planner problem binds 
in only state H or state L, and the strong sufficient conditions for a unique global maximum hold.  
This is because the socially optimal amount of urban land in the first and second periods differs 
between closed-loop and open-loop control.  Last, the social value of information is greater than 
zero when the solution to the open-loop social planner problem binds, the solution to the closed-
loop social planner problem binds in only state H or state L, and the strong sufficient conditions 
hold.  This is because the socially optimal amount of urban land in the first and second periods 
differs between closed-loop and open-loop control.  These cases are summarized in the following 
proposition:  
 
Proposition 5: The social value of information must be greater than zero when the additional 
information available under closed-loop control causes the social planner to change her optimal 
land-use decision in at least one of the periods or future states from the solution under open-loop 
control. 
 
Location-dependent development fees. 
In both the open-loop and closed-loop problems, the first and second period location-dependent 
development fees are non-decreasing in landlord distance from the CBD.  For each location 
within the municipality, i.e. ∀𝑋 ∈ [0,𝐴], the optimal first period location–dependent 
development fee equals the present value of the expected external cost of developing the 
property located at X in the first period regardless of the type of control problem.  Because there 
is no cumulative environmental externality, the external cost of developing the property located 
at X in the first period is the sum of the external cost of developing the property located at X in 
the first period on total first period rent and the present value of the expected external cost of 
developing the property located at X in the first period on total second period rent resulting from 
the irreversibility of development.  The optimal second period development fee at location X in 
the open-loop problem is the expected external cost of developing the property located at X in the 
second period on total second period rent.  Formally,  
 

𝐷𝑖,1𝑂
∗ = 𝐷1𝑂

∗(𝑋) = 𝐶1(𝑋) + 𝐵 � 𝑝𝑘�̂�2,𝑘(𝑋)
𝑘∈{𝐿,𝐻}

 

 
and 
 

𝐷𝑖,2𝑂
∗ = 𝐷2𝑂

∗(𝑋) = ∑ 𝑝𝑘�̂�2,𝑘(𝑋)𝑘∈{𝐿,𝐻} . 
 
In the closed-loop problem, the optimal second period development fee at location X in state k is 
the external cost of developing the property located at X in the second period on total second 
period rent if state k occurs.  Formally,  
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𝐷𝑖,1𝐶
∗ = 𝐷1𝐶

∗(𝑋) = 𝐶1(𝑋) + 𝐵 � 𝑝𝑘�̂�2,𝑘(𝑋)
𝑘∈{𝐿,𝐻}

, 

 
𝐷𝑖,2,𝐻
𝐶 ∗ = 𝐷2,𝐻

𝐶 ∗(𝑋) = �̂�2,𝐻(𝑋), 
 
and  
 

𝐷𝑖,2,𝐿
𝐶 ∗ = 𝐷2,𝐿

𝐶 ∗(𝑋) = �̂�2,𝐿(𝑋). 
 
If the strong sufficient conditions for a unique global maximum hold, the optimal open-loop and 
closed-loop location-dependent development fees in period t at location 𝑋𝑖 ∈ [0,𝐴] are not 
functions of the socially optimal amounts of urban land, and thus their expected values are equal.  
Intuitively, the components of the closed-loop and open-loop marginal external costs of urban 
development only differ because they are functions of different solutions for the amounts of 
urban land.  Because the marginal external cost of development in period t is a function of only 
the amount of urban land in period t under the strong sufficient conditions, the expected external 
cost of developing a property at location X in period t is only a function of location.  As a 
consequence, the expected external cost of developing a property at location X in period t is 
identical for the open-loop and closed-loop problems.  Summarizing, 
 
Proposition 6: Assuming that the strong sufficient conditions for a unique global maximum hold, 
the open-loop and closed-loop optimal location-dependent development fees are identical in the 
first period.  The expected value of the optimal second period location-dependent development 
fees under closed-loop control equals the second-period optimal second-period location-
dependent development under open-loop control. 
 
This proposition is proved in the appendix. 
 
Location-independent development fees.   
In both the open-loop and closed-loop problems, the optimal first period location-independent 
development fee equals the present value of the expected marginal external cost of urban 
development over time.  In the open-loop problem, the optimal second period development fee 
equals the expected marginal external cost of second period urban development.  Formally, 
 
 

𝐹1𝑂
∗ = 𝐶1�𝑋�1𝑂𝑃

∗� + 𝐵 � 𝑝𝑘�̂�2,𝑘�𝑋�2𝑂𝑃
∗�

𝑘∈{𝐿,𝐻}

 

 
and 
 

𝐹2𝑂
∗ = � 𝑝𝑘�̂�2,𝑘�𝑋�2𝑂𝑃

∗�
𝑘∈{𝐿,𝐻}

. 

 
In the closed-loop problem, the optimal second period development fee in state 𝑘 equals the 
marginal external cost of second period urban development if state k occurs.  Formally, 
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𝐹1𝐶

∗ = 𝐶1�𝑋�1𝐶𝑃
∗� + 𝐵 � 𝑝𝑘�̂�2,𝑘�𝑋�2,𝑘

𝐶𝑃∗�,
𝑘∈{𝐿,𝐻}

 

 
𝐹2,𝐻
𝐶 ∗ = �̂�2,𝐻�𝑋�2,𝐻

𝐶𝑃 ∗�, 
 
and  
 

𝐹2,𝐿
𝐶 ∗ = �̂�2,𝐿�𝑋�2,𝐿

𝐶𝑃∗�. 
 
For location-independent development fees, a result corresponding to proposition 6 does not 
exist.  Unlike location-dependent development fees, location-independent development fees are 
functions of the socially optimal amounts of urban land.  Consequently, the optimal open-loop 
and closed-loop first period location-independent development fees differ in value unless 
𝑋�1𝑂𝑃

∗ = 𝑋�1𝐶𝑃
∗ and 𝑋�2𝑂𝑃

∗ = 𝑋�2,𝐻
𝐶𝑃 ∗ = 𝑋�2.𝐿

𝐶𝑃∗ , which occurs when both irreversibility constraints bind 
in the closed-loop social planner problem, or each component of the marginal external cost of 
urban development is constant with respect to the amount of urban land in period 1 and the 
amount of urban land in period 2 for both states k.  For the same reason, the expected value of 
the optimal closed-loop second period location-independent development fees differs from the 
optimal open-loop second-period location-independent development fee when the strong 
sufficient conditions hold.  When the open-loop and closed-loop location-independent 
development fees differ, no definitive statement can be made about the sign or magnitude of the 
difference because the expected value of the marginal external cost of second period urban 
development on second period total rent is unknown. 
 
The analysis in this section has established that under the strong sufficient conditions for a 
unique global maximum, the location-dependent development fees are robust to the type of 
control problem, while urban growth boundaries and location-independent development fees are 
not robust.  More specifically, the first-period open-loop urban growth boundary is equal to or 
larger than the corresponding closed-loop urban growth boundary.  While the sign of the 
difference between open-loop and closed-loop location-independent development fees is 
unknown without additional assumptions, location-independent development fees differ across 
the control problems, except under limited conditions.  This suggest an advantage of location-
dependent development fees over location-independent development fees and urban growth 
boundaries: location-dependent development fees may be able to achieve the socially optimal 
outcome even if policymakers do not account for the future availability of information about the 
effects of climate change when determining current land use policy, as long as landowners 
recognize the future availability of such information. 
 
Time consistency of the socially optimal policies. 
The issue of time-consistent policies first arose in Kydland and Prescott (1977).  The authors 
argue that optimal control theory results in time inconsistent policies when the expectations of 
economic agents are rational, unless the economic agents’ first period decisions are unaffected 

by the second period policy, i.e. 𝜕𝑋
�1𝐶𝑀

∗

𝜕𝑋�2,𝑘
𝐶 = 0, 𝜕𝑋

�1𝐶𝑀
∗

𝜕𝐷𝑖,2,𝑘
𝐶 = 0, and 𝜕𝑋

�1𝐶𝑀
∗

𝜕𝐹2,𝑘
𝐶 = 0.  Time inconsistency 
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occurs if these additional conditions do not hold because rational economic agents choose their 
first period action knowing that the government has an incentive to re-optimize in the second 
period.  In this context, time inconsistency corresponds to first period land use decisions 
depending on the expected second period policy.  Kydland and Prescott (1977) prove that the 
time-consistent policies that occur when the economic agents’ first period decisions are affected 

by the second period policy, i.e. 𝜕𝑋
�1𝐶𝑀

∗

𝜕𝑋�2,𝑘
𝐶 ≠ 0, 𝜕𝑋

�1𝐶𝑀
∗

𝜕𝐷𝑖,2,𝑘
𝐶 ≠ 0, and 𝜕𝑋

�1𝐶𝑀
∗

𝜕𝐹2,𝑘
𝐶 ≠ 0, are not socially optimal. 

 
Earlier, I assumed that the government could credibly bind its hands when determining land use 
policy in order to solve for the socially optimal policies.  If this assumption is relaxed, the 
possibility of time inconsistency must be addressed.  By definition, the socially optimal open-
loop policies are time consistent.  In the closed-loop problems, it can be proven that the socially 
optimal policies found earlier under the strong sufficient conditions are time-consistent by 
solving for the Stackelberg equilibrium under each policy; the first period closed-loop policy in 
each case equals the first-period time consistent policy found in the corresponding Stackelberg 
problem.  An alternative proof of the time consistency of these closed-loop policies is to observe 
that all of the second period closed-loop policies are independent of the amount of urban land in 
the first period because of the assumption that there is no cumulative environmental effect from 
first period urban development. 
 
Proposition 7: When the strong sufficient conditions for a unique global maximum hold, the 
socially optimal land use policies (urban growth boundaries, location-dependent development 
fees, and location independent policies) are time consistent. 
 
Open-loop feedback control 
As stated earlier, a closed-loop control problem corresponds more closely to the real world.  To 
the extent that policymakers do not account for future learning, their decision making processes 
are best represented by an open-loop control problem.  Accordingly, rational landowners 
recognize that policymakers will update policies when future information becomes available.  In 
the optimal control literature, this type of social planner problem is referred to as an open-loop 
feedback control problem: the first period land use policy is determined as in the open-loop 
social planner problem and the second period land use policy is determined as in the closed-loop 
social planner problem given the amount of urban land in the first period.  In this situation, the 
landlord problem is best described as a closed-loop problem. 
 
This problem is solved by modifying the Stackelberg two period game discussed in the previous 
subsection.  The problem is identical to the Stackelberg equilibrium, except that the first period 
policy is the socially optimal first period open-loop policy.  The model is solved recursively as 
before, and as a result the second period policy and land use decision are socially optimal given 
the first period land use decision of the landlord.  The landlord makes her first period land use 
decision subject to the first period open-loop policy and the policy updating process. 
 
Proposition 8. If location-dependent development fees are chosen optimally by a social planner 
and the strong sufficient conditions for a unique maximum hold, then the amount of development 
in an open-loop feedback control problem will equal the amount in the closed-loop social 
planner problem. 
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This result follows from three previously established results: the first period open-loop and 
closed-loop location-dependent development fees are identical (Proposition 6), the expected 
value of second period location-dependent development fees in the closed-loop problem equals 
the second-period location-dependent development fee in the open-loop problem (Proposition 6), 
and the location-dependent development fees are independent of the socially optimal amount of 
urban land.  This final condition implies that the second period location-dependent development 
fees are independent of the landlord’s first period land use decision. 
 
If urban growth boundaries or location-independent development fees are chosen by a welfare-
maximizing social planner and the strong sufficient conditions hold, the amount of development 
in an open-loop feedback problem will not equal the amount in the closed-loop social planner 
problem, except under limited circumstances.  Intuitively, this is because the socially optimal 
first period policy and the expected value of the socially optimal second period policy differ 
between the open-loop and closed-loop control problems when the social planner uses urban 
growth boundaries or location-independent development fees.  Consequently, the following 
proposition holds: 
 
Proposition 9: If a social planner optimally chooses urban growth boundaries and the strong 
sufficient conditions for a unique maximum hold, the amount of urban land in the first period of 
the open-loop feedback control problem is greater than or equal to the corresponding amount in 
the closed-loop social problem and less than or equal to the corresponding amount in the open-
loop social planner problem.  In addition, the amount of urban land in the second period of the 
open-loop feedback control problem if state k occurs is greater than or equal to the 
corresponding amount in the closed-loop social planner problem. 
 
Though it is clear that the amount of development in an open-loop feedback control problem 
differs from the amount in the closed-loop social planner problem when the social planner uses 
location-independent development fees, the sign of the difference is dependent upon functional 
forms and parameters. 
 
Weak sufficient conditions. While the strong sufficient conditions guarantee both that there are 
unique global maximums for all four problems in Table 3 and that the irreversibility effect holds, 
the weak sufficient conditions guarantee only uniqueness.  This difference is due to the fact that 
the weak sufficient conditions allow for a cumulative environmental effect.  Consequently, the 
simplifying assumptions 𝐺𝑘�𝑋�1𝑛𝑚

∗,𝑋�2,𝑘
𝑛𝑚∗� = 0 and 𝐶2,𝑘�𝑋�1𝑛𝑚

∗,𝑋�2,𝑘
𝑛𝑚∗� = �̂�2,𝑘�𝑋�2,𝑘

𝑛𝑚∗� no longer 
hold.  As a consequence, two results do not hold under the weak sufficient conditions:  the 
irreversibility effect does not hold without additional assumptions (proposition 4) and location-
dependent development fees are not robust to the type of control problem (proposition 6).  In 
addition, socially optimal development fees are likely to be time inconsistent under the weak 
sufficient conditions.  The time consistency of the socially optimal urban growth boundaries 
under the weak sufficient conditions is less clear.  If future work proves that urban growth 
boundaries are time consistent under the weak sufficient conditions, urban growth boundaries 
may be the best policy option when a cumulative externality is present.  If urban growth 
boundaries prove to be time inconsistent, it is unclear which of three land use policies analyzed 
in this paper is the best policy option. 
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First and second period land use decisions in the social planner problems.   
As stated above, the results contained within proposition 4 no longer unanimously hold under the 
weak sufficient conditions for a unique global maximum.  This is because, unlike under the 
strong sufficient conditions, second period rental rates are functions of the amount of urban land 
in the first period, and thus the second period objective function in the closed-loop social planner 
problem is also a function of the amount of urban land in the first period (Freixas and Laffont, 
1984).  As a consequence, the closed-loop socially optimal amount of urban land in the first 
period can be greater than or less than the corresponding amount in the open-loop social planner 
problem, i.e. the irreversibility effect does not necessarily hold (Epstein, 1980). 
 
Epstein (1980) and Ulph and Ulph (1997) each define a set of sufficient conditions for the 
irreversibility effect to hold when the first and second period benefit functions are not separable 
in their respective decision variables.  The Epstein (1980) sufficient conditions are that the 
benefit functions and the irreversibility constraints are concave with respect to the decision 
variables and the derivative of the second period value function with respect to the amount of 
urban land in the first period is concave with respect to the posterior probabilities.  These 
assumptions ensure that the expected marginal cost of first period development increases with 
the availability of information (Ulph and Ulph, 1997; Gollier, Jullien, and Treich, 2000).  The 
Ulph and Ulph (1997) sufficient condition is that the irreversibility constraint binds in the open-
loop social planner problem.  If either the Epstein (1980) or Ulph and Ulph (1997) sufficient 
conditions for the irreversibility effect hold in addition to the weak sufficient conditions for a 
unique global maximum, then unique global maximums exist for all four problems in Table 3 
and  the irreversibility effect holds. 
 
Proposition 10: Assuming that the weak sufficient conditions for a unique global maximum hold, 
the socially optimal amount of urban land in the first period under closed-loop control is less 
than or equal to the corresponding amount under open-loop control if the derivative of the 
second period value function with respect to the amount of urban land in the first period is 
concave with respect to the posterior probabilities (Epstein, 1980) or if the open-loop social 
planner problem is binding (Ulph and Ulph, 1997). 
Corollary 10a: In the first period, the difference between the socially and privately optimal 
amounts of urban land under closed-loop control is greater than or equal to this difference 
under open-loop control when either of the assumptions discussed above in proposition 10 hold 
in addition to the weak sufficient conditions. 
Corollary 10b: The socially optimal first-period urban growth boundary under open-loop 
control is greater than or equal to the corresponding urban growth boundary under closed-loop 
control when either of the assumptions discussed above in proposition 10 hold in addition to the 
weak sufficient conditions.   
 
Proposition 10 holds by Theorem 1 in Epstein (1980) and Theorem 3 in Ulph and Ulph (1997).  
Corollaries 10a and 10b follow.   
 
Under the weak sufficient conditions, the socially optimal amount of urban land can differ 
between open-loop and closed-loop control, and as a result policymakers should account for the 
difference between private and social values of information when determining land use policies.  
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However, the irreversibility effect does not always hold under the weak sufficient conditions.  As 
a consequence, socially optimal land use policies do not always prevent a greater amount of 
development under closed-loop control than under open-loop control.  If the Epstein (1980) and 
Ulph and Ulph (1997) conditions hold in addition to the weak sufficient conditions, Proposition 
10 implies that the irreversibility effect holds and that policymakers who account for the future 
availability of information when setting land use policies, such as zoning or urban growth 
boundaries, prevent a greater amount of development than those who ignore it. 
 
Development fees. 
The open-loop and closed-loop location-dependent and location-independent development fees 
under the weak sufficient conditions differ from those under the strong sufficient conditions.  
Under the weak sufficient conditions, location-dependent development fees are functions of the 
socially optimal amounts of urban land because the possible existence of a cumulative 
environmental effect from urban development has two effects.  First, the present value of the 
expected external cost of developing a property located at X in the first period on total second 
period rent resulting from the cumulative environmental effect of urban development, 
𝐵∑ 𝑝𝑘𝐺𝑘�𝑋,𝑋�2,𝑘

𝑛𝑃∗� 𝑘∈{𝐿,𝐻} ∀𝑛 ∈ {𝑂,𝐶}, is included in the first-period location dependent 
development fees.   Second, the external cost of developing a property located at X in the second 
period on total second period rent in state k becomes a function of the amount of urban land in 
the first period, i.e. �̂�2,𝑘(𝑋) becomes 𝐶2,𝑘�𝑋�1𝑛𝑃

∗,𝑋� ∀𝑛 ∈ {𝑂,𝐶}.   
 
The optimal first period location–dependent development fee equals the present value of the 
expected external cost of developing the property located at X in the first period for each location 
within the municipality, i.e. ∀𝑋 ∈ [0,𝐴], regardless of the type of control problem.  Because 
there is a cumulative environmental externality, the external cost of developing the property 
located at X in the first period is the sum of the external cost of developing the property located 
at X in the first period on total first period rent, the present value of the expected external cost of 
developing the property located at X in the first period on total second period rent resulting from 
the cumulative environmental effect of development, and the present value of the expected 
external cost of developing the property located at X in the first period on total second period 
rent resulting from the irreversibility of development.  The optimal second period development 
fee at location X in the open-loop problem is the expected external cost of developing the 
property located at X in the second period on total second period rent.  Formally,  

 
𝐷1𝑂

∗�𝑋,𝑋�1𝑂𝑃
∗,𝑋�2𝑂𝑃

∗� = 𝐶1(𝑋) + 𝐵 � 𝑝𝑘𝐺𝑘�𝑋,𝑋�2𝑂𝑃
∗�

𝑘∈{𝐿,𝐻}

+ 𝐵 � 𝑝𝑘𝐶2,𝑘�𝑋�1𝑂𝑃
∗,𝑋�

𝑘∈{𝐿,𝐻}

 

 
and 
 

𝐷2𝑂
∗�𝑋,𝑋�1𝑂𝑃

∗� = � 𝑝𝑘𝐶2,𝑘�𝑋�1𝑂𝑃
∗,𝑋�

𝑘∈{𝐿,𝐻}

. 

 
In the closed-loop problem, the optimal second period development fee at location X in state k is 
the external cost developing the property located at X in the second period on total second period 
rent if state k occurs.  Formally, 
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𝐷1𝐶�𝑋,𝑋�1𝐶𝑃

∗,𝑋�2,𝑘
𝐶𝑃∗� = 𝐶1(𝑋) + 𝐵 � 𝑝𝑘𝐺𝑘�𝑋,𝑋�2,𝑘

𝐶𝑃∗�
𝑘∈{𝐿,𝐻}

+ 𝐵 � 𝑝𝑘𝐶2,𝑘�𝑋�1𝐶𝑃
∗,𝑋�

𝑘∈{𝐿,𝐻}

, 

 
𝐷2,𝐻
𝐶 �𝑋,𝑋�1𝐶𝑃

∗� = 𝐶2,𝐻�𝑋�1𝐶𝑃
∗,𝑋�, 

 
and  
 

𝐷2,𝐿
𝐶 �𝑋,𝑋�1𝐶𝑃

∗� = 𝐶2,𝐿�𝑋�1𝐶𝑃
∗,𝑋�. 

 
Because two components of the external cost of developing a property located at X, i.e. 
𝐵∑ 𝑝𝑘𝐺𝑘�𝑋,𝑋�2,𝑘

𝑛𝑃∗� 𝑘∈{𝐿,𝐻}  and 𝐶2,𝑘�𝑋�1𝑛𝑃
∗,𝑋� ∀𝑘 ∈ {𝐿,𝐻}, are functions of the amount of urban 

land, the expected external cost of developing a property at location X in period t is a function of 
location and the amount of urban land.  As a consequence, the expected external cost of 
developing a property at location X in period t may differ between the open-loop and closed-loop 
problems.  Because, the socially optimal location-dependent development fee at location X in 
period t equals the expected external cost of developing the property at location X in period t, it 
too may differ between the open-loop and closed-loop problems.  Consequently, the following 
proposition holds:  
 
Proposition 11: Assuming that the weak sufficient conditions hold, the first period closed-loop 
location-dependent development fee differs from the first period open-loop location-dependent 
development fee and the expected value of second period closed-loop location-dependent 
development fees differs from the second-period open-loop location-dependent development fee, 
unless 𝑋�1𝑂𝑃

∗ = 𝑋�1𝐶𝑃
∗ and 𝑋�2𝑂𝑃

∗ = 𝑋�2,𝐻
𝐶𝑃 ∗ = 𝑋�2,𝐿

𝐶𝑃∗ or each component of the marginal external cost 
of urban development is constant with respect to the amounts of urban land in periods 1 and 2. 
 
This proposition holds regardless of whether or not the irreversibility effect holds.  This is 
similar to the results for the location-independent development fees under both the weak and 
strong sufficient conditions. 
 
Under the weak sufficient conditions, the possible existence of a cumulative environmental 
effect from urban development effects location-independent development fees in two ways.  
First, first-period location-independent development fees include the present value of the 
expected marginal external cost of urban development in the first period on total second period 
rent resulting from the cumulative environmental effect of urban development, 
𝐵∑ 𝑝𝑘𝐺𝑘�𝑋�1𝑛𝑃

∗,𝑋�2,𝑘
𝑛𝑃∗� 𝑘∈{𝐿,𝐻} ∀𝑛 ∈ {𝑂,𝐶}.  Second, the marginal external cost of urban 

development in the second period on total second period rent in state k becomes a function of the 
amount of urban land in the first period, i.e. �̂�2,𝑘�𝑋�2,𝑘

𝑛𝑃∗� to 𝐶2,𝑘�𝑋�1𝑛𝑃
∗,𝑋�2,𝑘

𝑛𝑃∗� ∀𝑛 ∈ {𝑂,𝐶}, in the 
first and second period location-independent development fees.   
 
The open-loop and closed-loop first period location-independent development fees both equal 
the present value of the expected marginal external cost of urban development over time.  In the 
open-loop problem, the optimal second period development fee equals the expected marginal 
external cost of second period urban development.  Formally, 
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𝐹1𝑂

∗ = 𝐶1�𝑋�1𝑂𝑃
∗� + 𝐵 � 𝑝𝑘𝐺𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗� + 𝐵 � 𝑝𝑘𝐶2,𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗�

𝑘∈{𝐿,𝐻}𝑘∈{𝐿,𝐻}

 

 
and 
 

𝐹2𝑂
∗ = � 𝑝𝑘𝐶2,𝑘�𝑋�1𝑂𝑃

∗,𝑋�2𝑂𝑃
∗�

𝑘∈{𝐿,𝐻}

. 

 
In the closed-loop problem, the optimal second period development fee in state 𝑘 equals the 
marginal external cost of second period urban development if state k occurs.  Formally, 
  

𝐹1𝐶
∗ = 𝐶1�𝑋�1𝐶𝑃

∗� + 𝐵 � 𝑝𝑘
𝑘∈{𝐿,𝐻}

𝐺𝑘�𝑋�1𝐶𝑃
∗,𝑋�2,𝑘

𝐶𝑃∗� + 𝐵 � 𝑝𝑘𝐶2,𝑘�𝑋�1𝐶𝑃
∗,𝑋�2,𝑘

𝐶𝑃∗�,
𝑘∈{𝐿,𝐻}

 

 
𝐹2,𝐻
𝐶 ∗ = 𝐶2,𝐻�𝑋�1𝐶𝑃

∗,𝑋�2,𝐻
𝐶𝑃 ∗�, 

 
and  
 

𝐹2,𝐿
𝐶 ∗ = 𝐶2,𝐿�𝑋�1𝐶𝑃

∗,𝑋�2,𝐿
𝐶𝑃∗�. 

 
Because location-independent development fees are functions of the socially optimal amounts of 
urban land, the optimal first period closed-loop location-independent development fee differs 
from the optimal first-period open-loop location-independent development fee and the expected 
value of optimal second period closed-loop location-independent development fees differs from 
the optimal second-period open-loop location-independent development fee, except under 
limited circumstances.  These exceptions are when 𝑋�1𝑂𝑃

∗ = 𝑋�1𝐶𝑃
∗ and 𝑋�2𝑂𝑃

∗ = 𝑋�2,𝐻
𝐶𝑃 ∗ = 𝑋�2,𝐿

𝐶𝑃∗ or 
each component of the marginal external cost of urban development is constant with respect to 
the amounts of urban land in periods 1 and 2.  No definitive statement can be made about the 
sign of the difference between the optimal open-loop and closed-loop first period location-
independent development fees. 
 
Unlike under the strong sufficient conditions, location-dependent development fees are not 
robust to the type of control problem under the weak sufficient conditions.  Furthermore, the sign 
of the difference between open-loop and closed-loop location-dependent development fees is 
difficult to determine under the weak sufficient conditions for a unique global maximum.  This is 
also true for the sign of the difference between open-loop and closed-loop location-independent 
development fees.  The sign of this difference depends upon functional forms and parameters for 
both types of development fees. 
 
Time-consistency of the socially optimal policies. 
Because a cumulative externality may exist, the external cost of developing the property located 
at X in the second period on total second period rent if state k occurs, i.e. 𝐶2,𝑘�𝑋�1𝐶𝑃

∗,𝑋�, is a 
function of the amount of urban land in the first period for all locations within the municipality, 
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i.e. ∀𝑋 ∈ [0,𝐴].  As a consequence, the socially optimal second period closed-loop location-
dependent and location-independent development fees are functions of the socially optimal 
amount of urban land in the first period.  In general, Kydland and Prescott (1977) implies that 

these socially optimal development fees are time inconsistent because 𝜕𝑋
�1𝐶𝑀

∗

𝜕𝐷𝑖,2,𝑘
𝐶 ≠ 0 and 𝜕𝑋

�1𝐶𝑀
∗

𝜕𝐹2,𝑘
𝐶 ≠ 0.  

Because the shadow values associated with the second period urban growth boundaries are 
functions of the amount of urban land in the first period, rather than the urban growth boundaries 
themselves, it is less clear whether urban growth boundaries are time inconsistent.  Analysis is 
further complicated by the landlord’s ability to at least partially determine when irreversibility 
constraints and urban growth boundaries bind through her first period land use decision.    Future 
research will determine when development fees and urban growth boundaries are time 
consistent, and when they are not.  This work is necessary to clarify which policy is the best 
policy option when a cumulative environmental externality is present. 
 
IX. Conclusion 
 
Local governments in California are faced with the challenge of preserving oak woodlands from 
urban and agricultural development when the future of this habitat is uncertain due to climate 
change.  Because the majority of oak woodlands are privately owned, the economic argument for 
oak woodland conservation is the positive amenities that oak woodlands produce, which benefit 
surrounding neighbors and society as a whole.  Assuming that local policymakers set current oak 
woodland policy to maximize social-welfare within their municipality, this paper attempts to 
address how local policymakers should adjust land use policies to account for the potential 
effects of climate change. 
 
In order to answer this question, I analyzed how climate change affects the social welfare-
maximizing magnitudes of three land use policies (urban growth boundaries, location 
independent-development fees, location-dependent development fees) within a spatial-temporal 
model of a municipality.  I developed a two-period model of a municipality by modifying an 
open-city model.  Two land uses were modeled: urban and oak woodland.  I assumed urban 
development was irreversible, while oak woodland produced positive location-dependent and 
location-independent externalities of uncertain future magnitudes.  In order to guarantee a unique 
global maximum, these externalities were assumed to be decreasing in urban development at a 
non-decreasing rate.   
 
Using this model, I solved for the privately and socially optimal land allocations under open-loop 
and closed-loop control.  While closed-loop control problems are likely to be more accurate 
depictions of the evolution of available information in the real-world, policymakers who ignore 
the possibility of the future availability of climate information are more accurately modeled by 
open-loop control problems.  I identified the optimal trajectory of each policy instrument through 
time and proved several key propositions about conservation under uncertainty: the 
irreversibility effect held under the strong sufficient conditions (proposition 4) and held with 
additional assumptions under the weak sufficient conditions (proposition 10), location-dependent 
development fees were robust to the type of control problem under the strong sufficient 
conditions (proposition 6) and were not robust under the weak sufficient conditions (proposition 
11), and the socially optimal policies were time consistent under the weak sufficient conditions 
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(proposition 7).  My results were separated into two potentially important cases: no cumulative 
environmental externality from urban development and the possible existence of a cumulative 
environmental externality. 
 
I proved four key propositions under the assumption that there was no cumulative environment 
cost from first period urban development.  First, the socially optimal amount of oak woodland in 
the closed-loop control problem was greater than or equal to the corresponding amount in the 
open-loop control problem.  Because the privately optimal amounts of oak woodland were equal 
across these control problems, this result implied that a greater amount of oak woodland 
development was prevented by socially optimal land use policies under closed-loop control than 
open-loop control.  Second, social welfare-maximizing urban growth boundaries and location-
independent development fees could differ between the two control problems.  These results 
implied that if local policymakers ignore the potential effects of climate change when setting 
urban growth boundaries or location-independent development fees, they do not restrict urban 
development enough.  Third, the social welfare-maximizing location-dependent development 
fees did not differ between the open-loop and closed-loop control problems.  As a result, 
location-dependent development fees achieved the socially optimal land use allocation in the 
open-loop feedback control problem, while urban growth boundaries and location-independent 
development fees did not achieve optimality.  Last the socially optimal closed-loop policies were 
time-consistent, which indicated that they are achievable. 
 
I proved two key propositions under the assumption that there was a cumulative environment 
cost from first period urban development.  First, the socially optimal amount of oak woodland in 
the closed-loop control problem was not necessarily greater than or equal to the corresponding 
amount in the open-loop control problem.  Because the privately optimal amounts of oak 
woodland were equal across these control problems, this result implied that socially optimal land 
use policies potentially prevented less oak woodland development under closed-loop control than 
open-loop control.  Second, all three social welfare-maximizing land use policies, including 
location-dependent development fees, could differ between the open-loop and closed-loop 
control problems.  These results implied that if local policymakers ignore the potential effects of 
climate change when setting land use policies, they fail to achieve the socially optimal land use 
allocation.  In addition, preliminary theoretical results indicated that socially optimal closed-loop 
location-dependent and location-independent development fees were time inconsistent, while the 
intuition for urban growth boundaries was less clear.  This suggests that use of urban growth 
boundaries and zoning instead of development fees to manage land use, as is currently observed 
in land use planning, could be socially desirable if urban growth boundaries prove to be time 
consistent. 
 
The robustness of location-dependent development fees to the type of control problem under the 
strong sufficient conditions indicates that they are likely to be a more suitable land use policy in 
situations of uncertainty than either urban growth boundaries or location-independent 
development fees when there is no cumulative environmental externality from development.  
Demonstrating their value is particularly important in order to overcome the difficulty of their 
implementation.  Policies that treat landowners within a municipality differently can be 
politically controversial.  This can be particularly true when this differential treatment is based 
on benefits accruing to adjacent urban properties developed prior to the implementation of the 
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policy.  Because cumulative environmental effects are likely to be significant in many real world 
situations, future research is necessary to ascertain how robust location-dependent development 
fees are under real-world parameters when the strong sufficient conditions do not hold.   
 
The results under the strong sufficient conditions apply to a general set of spatial-temporal 
problems that have the following characteristics.  First, private landowners must choose between 
two land uses.  Second, one land use must produce a positive or negative externality with an 
uncertain future value.  Third, one, and only one, land use is irreversible.  Fourth any effect of 
previous land use allocations on current net land use externalities through the cumulative 
environmental effect of urban development must be small.  Because disease, regeneration 
problems and climate change have uncertain implications for many habitats, the results of this 
paper apply to a host of local conservation programs that aim to preserve threatened habitats on 
private lands from human activities. 
 
Another implication is that public and private conservation programs that purchase private lands 
or development rights, such as local land trusts, should amend their current methods for ranking 
conservation choices to take into account the potential risk of vegetative movement or loss.  The 
expected benefit-cost targeting approach, which ranks land conservation choices in order to 
minimize the expected loss of non-market services due to future land development subject to a 
conservation budget, over protects properties with high risks of future habitat loss.  Because the 
social value of information is greater than zero when the social welfare-maximizing land use 
allocations differed between the control problems, the expected benefit targeting approach can be 
adjusted by including the social value of information when calculating the expected loss of non-
market services.  In order to adjust the expected benefit targeting approach in this manner, 
conservation programs must be willing to return these lands to the private domain if their effort 
to conserve the targeted habitat is unsuccessful.  Otherwise, no option value arises because 
conservation is, effectively, irreversible.     
 
There exist several fruitful directions for future work to explore.  One such direction, as 
discussed earlier, is to prove the time consistency or inconsistency of land use policies when a 
cumulative environmental externality from urban development is present.  Another potential 
direction for future research is to analyze the effects of relaxing the model’s most important 
simplifying assumptions, such as the effect of climate change on agricultural profits.  Standiford 
(1989) indicates that forage production is affected by precipitation and oak canopy cover.  
Because climate change has uncertain effects on precipitation and oak habitat, its potential effect 
on forage is also uncertain.  Because relaxing this assumption introduces uncertainty into a 
market return that is already accounted for by landowners when making their land use decisions, 
it will result in a difference between the solutions for the open-loop landlord problem and the 
closed-loop landlord problem even in the absence of a cumulative environmental externality.  
This difference in the competitive equilibrium land use allocations between open-loop and 
closed-loop control will result in a non-zero private value of information. 
 
Another direction that can be explored is the robustness of location-dependent policies to 
different types of information assumptions.  Because location-dependent development fees 
proved robust to the type of control problem when there were zero environmental externalities, 
location-dependent policies may also have value in situations where uncertainty declines 
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gradually and/or at an unknown rate.  Future research is necessary to evaluate the potential of 
location-dependent development fees in these situations.   
 
Another direction for future research is the estimation of the value of location-dependent and 
location-independent amenities produced by oak woodlands.  A solid starting point is a 
comprehensive hedonic analysis of urban, rural residential, ranch, and agricultural land prices in 
which oak vegetation is a key explanatory variable.  Some of the variables critical for inclusion 
are distance to nearest oak stand and open-space, land uses (including open-space) of 
surrounding properties, and the volume of oak on the property and on surrounding properties.  
This type of econometric model allows for several pieces of key analysis.  First, the marginal 
value of oak habitat in terms of its addition to the value of location-dependent externalities is 
measurable if the volume of oaks on surrounding properties and distance to nearest stand are 
included in the hedonic analysis.  Second, the model can be used to differentiate the value of 
preserving oak woodlands from the value of preserving open-space in general.  Last, the 
econometric model can be used to test whether the strong sufficient conditions for a unique 
global maximum hold if the econometric analysis is done with panel data. 
 
A final direction for future work is to extend the current model to develop a calibrated model of 
land use choice within a municipality.  Functional form assumptions and parameter values are 
required for such a model; sensitivity analysis is necessary when parameter values and functional 
forms cannot be estimated or obtained from existing data.  This model also requires that it be 
calibrated to existing land uses.  By assuming that the observed land use pattern represents a 
closed-loop competitive equilibrium, a quadratic cost function for urban development can be 
calibrated using existing land use data.  This type of model allows for additional analysis.  First, 
this type of calibrated model can be used to estimate social welfare-maximizing policy 
instruments for oak woodland preservation in cities and small counties.  Second, this model can 
be used to explore the effects of relaxing the assumptions that climate change has no effect on 
agricultural profits and that all properties are identical in size.  Third, this model can be used to 
explore the effects of including only the non-market benefits of oak woodland accruing to 
individuals living within the municipality versus the effects of including the non-market benefits 
gained by society as in Albers and Robinson (2007).  Last, this model can be utilized to test 
whether the key results that hold under the strong sufficient conditions still hold under realistic 
parameter values if the strong sufficient conditions for a unique global maximum no longer hold.  
In particular, this model can determine the policy that is closest to achieving the socially optimal 
land use allocation when there are two counter-veiling issues: time-consistency, which 
potentially favors urban growth boundaries, and sensitivity to the type of control problem, which 
favors location-dependent development fees. 
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