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Abstract: National parks and reserves are globally popular approaches to protecting bio-
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cultural development and exploitation of natural resources, they are frequently opposed
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tion proponents argue that protected areas can alleviate poverty by supplying ecosystem
services, promoting tourism and improving infrastructure. Thus �win-win�scenarios may
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Previous studies (Andam et al. 2008, 2009) suggest that Costa Rica�s protected area sys-
tem induced both reduced deforestation and alleviated poverty. We demonstrate that these
environmental and social impacts were spatially heterogeneous. Importantly, the charac-
teristics associated with the most avoided deforestation are the characteristics associated
with the least poverty alleviation. In other words, the same characteristics that have lim-
ited the conservation e¤ectiveness of protected areas may have improved the social welfare
impacts of these areas. These results suggest that �win-win�e¤orts to protect ecosystems
and alleviate poverty may be possible when policymakers are satis�ed with low levels of
each outcome, but tradeo¤s exist when more of either outcome is desired.
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1 Introduction

National parks and reserves are globally popular approaches to protecting biodiversity and

the supply of ecosystem services (MEA 2005). These protected areas now cover approx-

imately 12% of the world�s terrestrial surface, with few nations lacking a protected area

system (WPDA 2009). Despite the ubiquity of protected area systems, the published scien-

ti�c evidence related to their environmental impacts is sparse and comprises predominantly

case study analyses (MEA 2005; Joppa and Pfa¤ 2010). The evidence base related to their

impacts on neighboring human communities is much weaker (Coad et al. 2008). A debate

has emerged over whether the environmental goals of protected areas con�ict with poverty

alleviation goals, particularly in developing nations (Adams et al. 2004; Wilkie et al. 2006;

Coad et al. 2008). Opponents highlight the role that protected areas can play in limiting

agricultural development and exploitation of natural resources. Proponents highlight the

role that protected areas can play in supplying ecosystem services, promoting tourism and

improving infrastructure.

Empirical studies have found that protected areas, on average, are e¤ective in reducing

deforestation, although not as much as proponents may have expected (e.g., Cropper et al.

2001; Andam et al. 2008; Pfa¤ et al. 2009). Only a few well designed empirical studies have

examined protected area impacts on socioeconomic outcomes in surrounding populations.

They have found either no e¤ect (Dufy-Deno 1998; Lewis, Hunt and Plantinga 2002, 2003)

or a positive average e¤ect (Andam et al. 2010; Sims 2010). As with most empirical studies

in environmental policy, prior research on protected area impacts tends to focus on either

environmental or social outcomes, but not both, and estimate only mean treatment e¤ects.
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In order to better understand the way in which a protected area system a¤ects environ-

mental and social outcomes, one must examine the two outcomes jointly and elucidate how

di¤erent subpopulations are impacted. The econometric and program evaluation literature

tends to focus primarily on the estimation of mean treatment e¤ects, paying little attention

to the impacts of treatment on population subgroups (Manski 2005; Crump et al. 2008).

Yet, as noted by Manski (2005), average treatment e¤ects may not provide su¢ cient infor-

mation to a social planner whose goal is to maximize a speci�c social welfare function. For

example, a medication may have positive mean health impacts on the treated population as

a whole, yet men and women may respond di¤erently. Suppose that the positive treatment

e¤ects are driven by males�strong responses whereas the medication has no, or deleterious,

impacts on women. A physician would be remiss in prescribing such a medication without

conditioning on subgroup characteristics.

Understanding subgroup impacts allows for the formulation of what Manski (2005)

terms conditional empirical success (CES) rules. CES rules select treatments that maximize

average impacts based on observable covariates (Manski 2005 pp.75). In the context of

environmental policy, decisionmakers must possess an understanding of the heterogeneous

impacts of ecosystem protection conditional on biophysical and demographic characteristics.

For example, a planner may generate little avoided deforestation when establishing protected

areas on high slope land if this land would likely remain forested in the absence of protection

because it is less suitable for agriculture. Similarly, in an attempt to minimize negative

socioeconomic impacts from land-use restrictions, a planner may not want to place protected

areas in regions that comprise high proportions of agricultural workers if the opportunity

costs of conservation in such regions greatly outweigh the local bene�ts from protected
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areas.

Costa Rica is an ideal setting for studying CES rules related to protected areas. Costa

Rica is a biodiverse developing nation with rich and reliable spatially explicit data on bio-

physical and demographic characteristics. It was an early adopter of protected areas in the

late 1960s and early 1970s and, by 2000, had protected about 25% of the nation. Despite

these e¤orts to protect ecosystems, however, Costa Rica experienced a substantial amount

of deforestation over the last 50 years: of the approximately 3 million hectares of forest in

1960, more than 1 million had been deforested by 1997 (Andam et al. 2008). The Costa

Rica government has established a goal to be a model of sustainable development in Cen-

tral America (Rubin and Hyman 2000). Most importantly, the available empirical evidence

(Andam et al. 2008, 2010) suggests a �win-win�scenario in which both avoided deforestation

and poverty alleviation were, on average, achieved in and around Costa Rican protected

areas. In order to examine this conjecture more deeply, we examine the heterogeneity of

the protected area impacts conditional on biophysical and demographic characteristics. We

�nd that the characteristics associated with the most avoided deforestation are the char-

acteristics associated with the least poverty alleviation. While our analysis con�rms that

Costa Rica�s protected areas system did lead to moderate levels of avoided deforestation

and poverty alleviation,even among high-poverty areas, it also points to tradeo¤s if deci-

sionmakers desire higher levels of either outcome.

1.1 Background

Two studies of the impacts of protected areas on avoided deforestation (Andam et al. 2008)

and poverty (Andam et al. 2010) comprise the point of departure for our study. Both studies
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use quasi-experimental matching techniques to obtain estimates of the average treatment

e¤ect on the treated (ATT). Estimating the ATT is akin to asking, �what would defor-

estation or socioeconomic outcomes have been had these areas not been protected?�Using

digital forest cover data, Andam et al. (2008) estimate the amount of avoided deforesta-

tion between 1960 and 1997 that can be attributed to the designation of protected areas

prior to 1980.1 Conventional methods of analysis in the conservation literature simply com-

pare deforestation outcomes on protected and unprotected parcels. Using these methods

yields estimates that imply protected areas were accountable for a 44% reduction in de-

forestation. These estimates are inherently biased due to the nonrandom designation of

protection. Protected land parcels are observably di¤erent from unprotected parcels based

on covariates that have been found in other studies to a¤ect deforestation. To control for

selection on observable characteristics, the authors create a representative counterfactual

group by matching unprotected land parcels to protected parcels based on key observable

covariates. The resulting estimate of avoided deforestation is a more modest 11% reduction

in deforestation attributable to protection. Their study con�rmed that protected areas did

indeed prevent deforestation, but because they tend to be placed on land that is undesirable

for agriculture, the deforestation they avoid is modest. The placement of protected areas

on land poorly suited for agriculture is a global phenomenon (MEA 2005).

Andam et al. (2010) use Costa Rica census tracts (segmentos) as the units of analysis

to estimate the impact of protected areas established prior to 1980 on poverty between 1973

and 2000. Similar to Andam et al. (2008), the authors use matching techniques to form

1They also estimate the impact of protected areas established after 1980, but the focus of our analysis is
on the areas established before 1980.
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a counterfactual sample that is similar to the treated census tracts based on observable

covariates that are believed to a¤ect both designation of protected areas and socioeconomic

outcomes. Their results indicate that the mean poverty was 1.3 points lower in census

tracts with more than 10% of their area protected compared to similar matched census

tracts with less than 1% protected land. This reduction is equivalent to an e¤ect size of

0.2 (impact divided by standard deviation of the matched control group). Selection bias

was substantial because protected areas tend to be placed in high poverty areas with low

potential for economic growth. A simple comparison of census tracts with and without

protected areas would lead to biased estimates that imply protected areas exacerbated

poverty.

2 Data

2.1 Baseline Data Sets

We use data from Andam et al. (2008) and Andam et al. (2010) to estimate the hetero-

geneous impacts of protection, conditional on biophysical and demographic characteristics.

The deforestation analyses use digital forest cover boundaries from 1960 and 1997, and

georeferenced land characteristics that are believed to in�uence both the designation of

protected areas and deforestation (see Table 1 and Andam et al. 2008 for details). To

ensure comparability, the sample land parcels from Andam et al. (2008) are used. Forest

cover outcomes are calculated using geographic information systems (GIS) and digital forest

cover maps from 1960 and 1997. Twenty thousand three-hectare land parcels (minimum

mappable unit) were selected at random from the 1960 forest cover layer. This layer pre-
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dates protected areas and thus serves as the baseline forest cover,which can be compared

across time to the 1997 forest cover. Forest cover is represented by a binary indicator: a

land parcel is considered forested if it has greater than 80% canopy cover. The outcome

for each land parcel is denoted by a 0 if it had not been deforested by 1997 and a 1 if it

had been deforested. To determine if a land parcel is considered protected for the analyses,

a layer containing all protected areas established prior to 1980 is overlaid with the land

parcels. Costa Rica�s protected areas system includes International Union for Conservation

of Nature (IUCN) management categories Ia, I, II, IV and VI, which represent the level of

land-use restrictions: Ia being the most strict. The proportions of these IUCN categories

in our sample are: Ia&I = 0.038; II = 0.43; IV = 0.038; VI = 0.496. Land parcels within

the boundaries of a protected area receive and indicator of treatment.2 Similar overlays

are performed with other data layers to create a set of covariates associated with each

observation.

In the socioeconomic analyses, the unit of observation is the census tract. The 1973

census is used as the baseline year (see appendix) and demographic data are geocoded to

their respective census tracts to form a set of covariates for each observation. In 1973 Costa

Rica contained 4,694 census tracts with an average size of 8.82km2 (range: 0.00466-836 km2).

To determine if a census tract is considered protected for the analyses, a layer containing all

protected areas established prior to 1980 is overlaid with the census tracts. As in Andam

et al. 2010, a census tract is considered protected if at least 10% of its area is occupied

2Of the 20,000 land parcels in the random sample, 3,380 were protected prior to 1980. To avoid
potential bias in estimates we follow Andam et al. (2008) and drop any land plot that was pro-
tected between 1980 and 1997 from the pool of potential counterfactual observation. 4,717 land
parcels are excluded prior to the analysis for various reasons, justi�cation for which can be found here:
http://www.pnas.org/content/suppl/2008/10/14/ 0800437105.DCSupplemental/0800437105SI.pdf
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by protected land (results are robust to changes in this threshold de�nition).3 Conversely,

any census tract that contains less that 1% protected land is considered unprotected and a

binary treatment indicator is assigned accordingly.4 A poverty index is derived for each tract

from census data following Cavatassi, Davis and Lipper (2004). Higher levels of poverty

are associated with greater poverty index values (negative poverty index values indicate low

levels of poverty). The censuses from which the poverty index is derived were conducted

in 1973 and 2000. In the analyses, the poverty index calculation for 2000 is the outcome of

interest. To match tracts on baseline characteristics, we use the matching covariates used

in Andam et al. (2010), which include the 1973 poverty index and other baseline covariates

that a¤ect both protected area location and economic growth (see Table 1 and Appendix for

more details). As noted in Andam et al. (2010) there were some protected areas established

prior to our baseline year (1973). However, a majority of the protected areas in our sample

(approximately 85%) were established between 1973 and 1979. Further, when we drop the

protected areas that were established prior to 1973 from the analysis, the qualitative results

remain the same.

2.2 Subgroup Variables

Agriculture has played a central role in the history of deforestation and economic growth in

Costa Rica (de Camino et al. 2000). For protected areas to stem deforestation, they must

3We use the 10% threshold in accordance with Andam et al. 2010. A 10% threshold was chosen because
protecting 10% percent of the worlds�ecosystems was the goal of the 4th World Congress on National Parks
and Protected Areas (Andam et al. 2010). Andam et al. (2010) show that their results are robust to changes
in this threshold value (alternatively de�ned as 20% and 50%).

4Of the 4,691 census tracts, 249 are considered protected (treated) prior to 1980 and 4164 are considered
potential counterfactual observations. To avoid bias in the analysis, 278 tracts with protection between one
and ten percent are dropped from the analysis.
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be placed in areas in which the forest was at risk of conversion to other uses and they must

be enforced. Thus we wish to estimate treatment e¤ects within subgroup covariates that

capture the returns to agriculture, the dependence of an area on agricultural activity, and

the ease of enforcement. All threshold values used to de�ne subgroups are baseline, pre-

protection values, and we test the sensitivity of our results to the choice of these thresholds.

Land use capacity is a measure of land�s suitability for cultivation that takes into

account such factors as soil, precipitation, climate and slope (see Table 1). Land parcels

designated as land use capacities 1, 2, 3 or 4 are denoted as land with high returns to

agriculture. In a related study, Pfa¤ et al. (2009) estimate how avoided deforestation

between 1986 and 1997 on protected Costa Rican land parcels varies according to geographic

characteristics that categorize the parcels as either �high�or �low�pressure. They use slope

as a subgroup variable under the assumption that high-sloping land is less productive and

more costly to cultivate (it is also more costly to log). To permit comparisons between our

study and their study, as well as to provide another proxy for returns to agriculture in an

area, we designate land with a slope of more than 23% as high-slope areas (the median

value of the deforestation analysis sample).

The returns to agriculture are higher on land that is closer to cities with markets. Yet

cities also tend to be the seats of government enforcement of deforestation laws and thus

their proximity to a plot may have a countervailing e¤ect on ecosystem conversion. In other

words, parcels far from cities may have low returns to agriculture, but less enforcement of

land-use laws. Cities also provide a tourism gateway and thus may further mediate the

economic impacts of protected areas. As a measure of access to markets we use the distance

to one of Costa Rica�s three major cities. Land parcels more than 57 kilometers of San
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Jose, Puntarenas or Limon are considered to be high-distance parcels (the median value of

the deforestation analysis sample).5 We also ran analyses with distance to road, which is a

covariate that captures the same economic relationships as distance to cities, but we omit it

from the �nal analyses because it provides qualitatively similar results to distance to major

city as a measure of access to markets. Among treated parcels, distance to major city and

distance to road have a (Pearson�s) correlation coe¢ cient of 0.704.

The aforementioned covariates are measures of the characteristics of the land parcel.

To characterize the economic conditions in the surrounding area, we use the percentage of

adults employed in the agricultural sector in the census tract. Robalino (2007) presents

a theoretical model that predicts negative economic impacts from protected area will be

stronger in areas with greater proportions of agricultural workers. We de�ne areas with

high-baseline agricultural workers as census tracts with more than 13% of the workers

employed in agriculture (the median value of the poverty analysis sample).

As a �nal variable to form subgroups for analysis, we chose a variable based on policy-

relevance rather than theory. As noted in the Introduction, the relationship between pro-

tected areas and poverty is important in international environmental policy debates (Adams

et al. 2004; Wilkie et al. 2006; Coad 2008). Thus di¤erences in outcomes for low-poverty and

high-poverty regions are of interest to decisionmakers. We de�ne an area as high-poverty if

it has a baseline poverty index of greater than 18 (the median value of the poverty analysis

sample).

5Pfa¤ et al. (2009) use distance to San Jose.
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3 Methods

3.1 Estimator

Andam et al. (2008) and Andam et al. (2010) use matching techniques as identi�cation

strategies to estimate the average treatment e¤ect on the treated (ATT).6 Naturally, once

an area is protected one is unable to observe what would have happened in this area had it

not been protected (termed the fundamental problem of causal inference by Holland 1986).

Matching therefore constructs an ex post counterfactual group of unprotected units that

is observably similar to the group of protected units in terms of key covariates believed to

a¤ect both outcome and selection into treatment. The underlying goal is to achieve balance

across the key covariates similar to that achieved by a randomized experiment. To achieve

this balance, Andam et al. (2008) and Andam et al. (2010) use bias-adjusted nearest

neighbor Mahalanobis matching.

Our study uses a quasi-experimental design to conduct subgroup analyses. We form

an ex post control group, based on observable covariates, on which we conduct subgroup

analyses with the ATT as the estimand of interest. Subgroup analyses are relatively rare

in the program evaluation literature (Crump et al. 2008), but can provide valuable insight

even when average treatment e¤ects are not signi�cantly di¤erent from zero (Crump et

al. 2008; Imbens and Wooldridge 2009). Perhaps the most common method of subgroup

analysis is the use of interaction terms in a regression framework. However, even if this type

6ATT is the appropriate estimand in these studies because the interest lies in the sample of areas that
were protected as compared to areas that could have been protected (unprotected areas that are similar
to protected areas based on key covariates). Alternatively, the average treatment e¤ect (ATE) additionally
imputes values for all control units (�nds the best match from the treatment group). Given that there are
many observational units that would never feasibly be selected for protection, using ATE as the estimand
makes little sense.
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of approach were preceded by matching (Ho et al. 2007) or trimming (Imbens 2004; Imbens

and Wooldridge 2009), the subgroup treatment e¤ect estimate is more similar to the Average

Treatment E¤ect (ATE) than the ATT. Crump et al. (2008) suggest estimating separate

regression functions (parametric or nonparametric) for treatment and control groups, and

testing for di¤erences in the coe¢ cients on the subgroup variable. While this approach is

more transparent, it too is an estimand that is more in-line with ATE than ATT.

We propose an estimator that uses regression-adjusted imputation methods (see Imbens

2004; Abadie et al. 2004; Imbens and Wooldridge 2009) and a general form matching-based

variance estimator (Abadie and Imbens 2006; Imbens and Wooldridge 2009) to estimate

subgroup e¤ects in terms of ATT. The advantage of this approach is that it allows for the

estimation of con�dence intervals to compare point estimates across subgroup pairs, while

still allowing transparent comparison of subgroup e¤ects to the overall ATT.

Like nearly all estimators for treatment e¤ect we use the form b� =P
N

�i � Yi where Yi

is the outcome for unit i and �i is a known weight such that
P

i:Ti=1

�i = 1,
P

i:Ti=0

�i = �1,

where Ti is the treatment indicator for unit i.7 Letting s indicate the subgroup of interest,

the subgroup ATT estimator is:

b� s =X
N

�si � Y si : (1)

where

Y si =

�
Y si if Ti = 1bY si = Y si:T=0 + b�0 (Xi:T=1)� b�0 (Xi:T=0) if Ti = 0

(2)

and b�0(�) represents the predicted values obtained from combining the coe¢ cients from a

7The simplest example of weights would come from one-to-one matching without replacement. In this case
�i:T=1 = ��i:T=0 = 1=NT=1. In general the weight is based upon the estimation strategy (i.e., propensity
score weighting, kernal matching etc.). For our purposes �i:T=1 = 1=NT=1; �i:T=0 = #C=NT=0, where #C
is the number of times an observation is used in the control group.
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control group regression, of outcome on covariates, with the respective treated and control

covariates.8 Because we are interested in the ATT, our estimator is:

b� s = X
Ni:T=1

�si � Y si +
X
Ni:T=0

�si � bY si : (3)

3.2 Variance

Variances for these subgroup ATT estimates are calculated using a general method proposed

by Imbens and Wooldridge (2009) which is related to the method proposed by Abadie and

Imbens (2006). The method permits heteroskedasticity across treatment arms (protected,

unprotected) and covariates. Matches are chosen, based on covariates, within treatment

arms and the di¤erence in outcome between these matches forms the basis for the variance

estimation:

b�2i (Xi) = (Yi � Yl)2 =2: (4)

Where Yl is the outcome of the nearest within treatment arm neighbor. This conditional

variance estimate is then used to estimate the variance for the sample:

bV (b�) =X
N

�2i � b�2i (Xi) : (5)

These variance estimates can then be used to form con�dence intervals by which the point

estimates of the di¤erences between treated and control subgroups can be evaluated.9

8The imputations are calculated by plugging the covariates Xi:T=1 and Xi:T=0 into the vector of coe¢ -
cients from the regression Yi:T=0 = Xi:T=0�0 + " to obtain b�0 (Xi:T=1) and b�0 (Xi:T=0), repectively.

9All ATT point estimates and associated variances were programmed in R v.2.9.1. The code is available
from the authors upon request.
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3.3 Inference

There are two components of our estimator b� s, delineated by high baseline levels of the co-
variates mentioned in Section 2, b�H , and low baseline levels, b�L. Protected and unprotected
units are assigned to high and low subsets based on an established threshold =. Assignment

to subgroup s 2 [L;H] is conducted according to the following rule:

si =

�
H if xi > =
L otherwise.

(6)

Each subgroup pair is composed of units xs=Hi with corresponding estimator b�H and units
xs=Li with corresponding estimator b�L. The estimator b�H is therefore calculated by com-

paring the outcomes of protected and unprotected units for which xs=Hi . Similarly, the

estimator b�L is calculated by comparing protected and unprotected units for which xs=Li :

These estimators address how protected units with high baseline levels of a covariate, for

instance, would have fared had they not been treated by comparing them to similar unpro-

tected units with high baseline levels of the same covariate.

Greater interest lies in the comparison, within subgroup pairs, of the two components of

the subgroup estimator than in the respective point estimates. We want to compare the ATT

estimates of high-baseline units to the ATT of low-baseline units for each set of subgroup

pairs. Speci�cally we want to know if b�H 6= b�L, which is an indication of heterogeneous
subgroup response to treatment. Let Cs

�b� s; bV � = �b� s � c �qbV (b� s);b� s + c �qbV (b� s)�
be the 95% con�dence interval for subgroup s, where c is the appropriate critical value

associated with the normal distribution. Let C = CH \ CL be the intersection of the

high and low-baseline covariate components of Cs. If C = ? then there is a statistically
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signi�cant di¤erence between the point estimates of b�H and b�L within subgroup pairs. In
other words, the absence of an intersection between the con�dence intervals of two subgroup

ATT point estimates provides evidence that the point estimates di¤er statistically. For

instance, suppose that for some baseline covariate the subgroup pair deforestation outcomes

have the relationship b�H > b�L and C = ?. This supposition would indicate that those

units with high baseline levels of the covariate exhibited statistically greater amounts of

deforestation than those units with low baseline levels of the covariate. Conversely, if in the

previous example C 6= ? we cannot draw any statistically meaningful conclusions regarding

heterogeneous treatment e¤ects, in spite of the observed point estimates b�H > b�L.
3.4 Implementation

We begin by creating two counterfactual control groups for the deforestation and socioe-

conomic subgroup analyses. To ensure comparability, we follow the methods of Andam et

al. (2008) and Andam et al. (2010) closely. There are two primary concerns in the for-

mation of the counterfactual groups. The �rst is comparability across studies. We ensure

comparability by drawing counterfactual groups that are similar to those used in previous

studies.10

Our second concern is the precision of our estimates. Because subgroup analyses re-

quire the segmentation of the sample (or population), subgroup treatment e¤ect estimates

will generally have less precision than the overall sample (or population) treatment e¤ect

10 In the deforestation analysis our counterfactual group is slightly di¤erent for two reasons. First, we
use an updated protected areas spatial layer which di¤ers from the layer used by Andam et al. (2008).
Second, we use only a single nearest neighbor match (Andam et al. (2008) uses the two nearest neighbors)
because there are negligible gains to precision, whereas bias is minimized using only one match (Imbens and
Wooldridge 2009).
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estimates. In the deforestation sample, precision is not a concern. There are 2,806 protected

land parcels in the sample and an equal number of unprotected parcels. However, because

the unit of analysis in the socioeconomic analyses is the census tract, there are far fewer

protected units (249) in the sample. Precision decreases when the sample is broken into

subsets according to the observable characteristics of interest. To improve precision, we

form the socioeconomic counterfactual group by combining propensity score and trimming

methods (Imbens 2004; Imbens and Wooldridge 2009). We calculate propensity scores for

the entire population of census tracts based on the covariates in Table 1. The population

is then trimmed according to Crump et al. (2009) and Imbens and Wooldridge (2009) in

order to remove extreme propensity score values which indicate that the units are not good

comparison units for the treated sample.11 After trimming, the remaining sample consists

of 231 protected census tracts and 973 unprotected census tracts. By using this alternative

method of forming our counterfactual group we face the concern that the estimates of ATT

will di¤er signi�cantly from the estimates obtained by Andam et al. (2010). It can be

seen, however, that by using the same bias-adjustment techniques as those used by Andam

et al. (2010), the estimated ATT of -1.39 is similar to that of original study. This gives

us con�dence that the subgroup estimates from this sample are indeed comparable to the

average treatment e¤ects from Andam et al. (2010).

To address potential heterogeneous deforestation and socioeconomic response by sub-

group, we �rst break the deforestation and socioeconomic samples into subgroup pairs

according to equation (6) using the threshold for each of the pretreatment (baseline) covari-

11This trimming method is based on the distribution of propensity scores. The trimmed set Ţ=Ţ� =
fx 2 Xj� � p (x) � 1� �g where p (x) is the estimated propensity score and � is the solution to: 1

��(��1) =

2 �
h

1
p(Xi)�(1�p(Xi))

���� < p (Xi) < 1� �
i
. The estimate for our set is � = 0:027.
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ates listed in section 2.2. Estimates of subgroup ATT are made for each subgroup within

each of the subgroup pairs according to the methods outlined in section 3.1. This is done for

both the deforestation and socioeconomic samples using the same threshold values to de�ne

subgroups. Using the same values allows us to compare how similar subgroups respond to

protection in terms of deforestation and socioeconomic outcomes.

[Table 2 and Figure 1 about here]

4 Results

Table 2 presents the results. For each subgroup, it presents the average outcome for pro-

tected units, the imputed counterfactual values for these units and the ATTs. Figure 1

graphically presents results from a statistical comparison of subgroup point estimates. Each

major column represents a subgroup pair and contains two ATT sub-columns. The height

of each bar represents the point estimate of ATT for the speci�ed subgroup. The associated

whisker represents the 95% con�dence interval for each of point estimate. Figure 1 shows

for which characteristics we �nd evidence of heterogeneous subgroup e¤ects. If the whiskers

of the two ATT estimates within a subgroup pair do not overlap, a statistical di¤erence in

subgroup e¤ects exists.

4.1 Land Use Capacity

As an indicator of agricultural suitability we �nd that protected land parcels with high

land use capacities display signi�cantly higher levels of avoided deforestation (32.4%) than

those with low capacities (9%). This result is consistent with the assumption that agricul-
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tural pressure increases the likelihood of deforestation. Table 2 indicates that even though

deforestation was higher on protected land parcels with high land use capacity (21% were

deforested as compared to 10% of low capacity protected parcels), the expected deforesta-

tion in the absence of protection was much higher (54% on high-capacity land as compared

to 20% on low-capacity land). However, the results suggest that protection on high-capacity

land may have exacerbated poverty (positive rather than negative ATT). In contrast, the

poverty reduction impacts on low-capacity lands are quite large.

4.2 Slope

The results also indicate a signi�cant di¤erence in deforestation ATT for high-slope and

low-slope land parcels. Avoided deforestation from protection on high-slope forest parcels

is estimated to be 1.4%, which is signi�cantly lower than the estimated avoided deforestation

of 15.9% on low-slope parcels (these results are qualitatively similar to the estimates of Pfa¤

et al. 2009). However, as was the case using land use capacity to de�ne subgroups, the

impacts of protection on poverty are reversed: poverty alleviation associated with protection

is greater on census tracts with high average slopes than those with low average slopes.

The results in 4.1 and 4.2 thus indicate that while the returns to protection in terms

of avoided deforestation are higher on land with relatively higher potential returns to agri-

culture, protection assigned to such land leads to comparatively poorer socioeconomic out-

comes.
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4.2.1 Distance to Major City

We �nd that protected land parcels that are located further from one of Costa Rica�s three

major cities experience signi�cantly higher levels of avoided deforestation (15.3%) than

parcels that are closer (5%). These results are counterintuitive when distance to a major

city is only viewed as a proxy for market access that increases the returns to agriculture.

However, distance to a major city also serves as a measure of land-use law enforcement.

There is less enforcement of existing land-use laws the further a land parcel is located from a

city. This explanation is consistent with the estimated avoided deforestation values in Table

2: deforestation is higher on both treated and control parcels farther from major cities.

The conditional impacts on poverty, however, are the opposite: although protection yields

greater avoided deforestation when located farther from cities, it yields higher socioeconomic

impacts when located near cities.

4.3 Agricultural Workers

We �nd a statistical di¤erence in the e¢ cacy of protected areas on deforestation outcomes

according to the percentage of agricultural workers that reside in the census tract from

which the land parcel is sampled. Avoided deforestation estimates are signi�cantly higher

on parcels that fall in census tracts with high percentages of agricultural workers (13.3%)

compared to those in census tracts with lower percentages of agricultural workers (4.5%).

Such a result is consistent with the conjecture that a higher proportion of agricultural

workers in the population serves as a good measure of the amount of agricultural activity

within the area, which is correlated with higher returns to avoided deforestation.

We �nd that census tracts with high percentages of agricultural workers exhibited signif-
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icantly lower socioeconomic outcomes due to protection (0.008) than did census tracts with

low percentages of agricultural workers (-1.802). These results provide evidence consistent

with predictions that land restrictions associated with protected areas have a di¤erential

e¤ect on agricultural workers (Robalino 2007).

4.4 Poverty

Although we �nd the point estimates of avoided deforestation due to protection to be higher

on land parcels that fall within census tracts with high levels of baseline poverty, the dif-

ference between high (11.6%) and low (8%) subgroups is statistically insigni�cant. So too

are the estimates of protections impact on socioeconomic outcomes for these subgroups.

The point estimates indicate that protection was more bene�cial in areas with high base-

line poverty but the con�dence intervals for these estimates clearly overlap. Statistical

signi�cance aside, the point estimates depict a desirable situation from many planners�per-

spectives. Although high-poverty areas fared no better, statistically, with protection than

low-poverty areas, avoided deforestation and poverty alleviation in high-poverty areas were

signi�cantly di¤erent from zero. Thus placing protected areas in high-poverty areas can, on

average, achieve environmental gains without exacerbating poverty. In fact, the evidence

suggests that, if anything, protected areas have alleviated poverty in these areas.

4.5 Robustness to Subgroup De�nitions

To de�ne subgroups, we use median values of the relevant covariates (see section 2.2). We

test the sensitivity of our results to a +/-10% change in these median threshold values.

Our inferences are unchanged in all but two instances. In the analysis of protection�s
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impact on poverty, the di¤erence between subgroups near and far from major cities is

no longer statistically signi�cant at the 5% level for either a +10% or -10% change in

the threshold value. The di¤erence between subgroups with high and low-sloped land is

no longer signi�cant for a 10% increase in the threshold value. The ordinal relationships

between the point estimates for each subgroup, however, remain qualitatively the same. In

the slope subgroup analysis, the precision of the estimates changes when the threshold is

increased because there are relatively few census tracts with a majority of land having very

high slopes This problem does not arise when the threshold value is decreased (in fact, the

qualitative and statistical relationships are the same using a threshold value that is 50%

lower than the one used in our analyses).12

We run three additional robustness analyses. In the �rst two we de�ne the threshold as

the 40th and 60th percentile subgroup values. For the third analysis we drop any observation

with a covariate value that lies between the 40th and 60th percentile and de�ne the �low�

group as any observation below the 40th percentile and the �high�group as any observation

above the 60th percentile. The results from each of these analyses are qualitatively similar

to the robustness analysis using a +/-10n% change in the median threshold values.

4.6 Unobserved Heterogeneity

Unobserved heterogeneity (hidden bias) is a concern in any non-experimental study. Con-

sistent estimation of the average treatment e¤ect on the treated depends on the untestable

assumption that, after conditioning on baseline characteristics, the outcome under the no-

12The threshold value of 23% slope to separate the subgroups comes from the median slope of units in the
deforestation sample. If one were to instead use the median slope of the census tract in the socioeconomic
sample (16%), a relationship similar to that displayed by land use capacity is observed. High-slope areas
show relatively high poverty alleviation, whereas low-slope areas are associated with poverty exacerbation.
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treatment state is independent of treatment exposure. In our study, if the protected and

matched unprotected units di¤er in some unobservable way that a¤ects deforestation, our

estimates will be biased. For example, consider how Andam et al. (2008) measure forest

cover: a three-hectare plot is considered forested if its canopy cover was greater than 80%. If

forested plots selected for protection systematically were to have more (less) canopy cover

than the matched controls, our avoided deforestation estimates would be biased upward

(downward). For example, say that mean baseline crown cover was 95% in protected plots

and 85% in matched control plots. With similar levels of deforestation on protected and

unprotected plots, unprotected forest plots would be more likely to pass the 80% threshold

and be declared �deforested.�13

To test the sensitivity of their results to hidden biases, Andam et al. (2008, 2010)

use a sensitivity test recommended by Rosenbaum (2002). For example, in the avoided

deforestation study of Andam et al. (2008), the authors examine the possibility that the

protected plots may be unobservably less likely to be deforested than their matched controls.

They posit the existence of a strong confounding factor that not only a¤ects protection

decisions, but also determines whether deforestation is more likely in protected plots or the

matched controls. They �nd that the treatment e¤ect estimate is highly robust to hidden

bias: if an unobserved plot attribute caused the odds ratio of protection to di¤er between

protected and unprotected plots by a factor of as much as 2.15, the 99% con�dence interval

of the estimate would exclude zero.

Of course, a sensitivity test to hidden bias only quanti�es and expresses the uncertainty

13We thank an anonymous referee for noting this particular potential source of hidden bias.
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from hidden bias. It does not dispel that uncertainty.14 Our study, however, focuses

on the ordinal rankings of treatment e¤ect estimates within subgroup pairs rather than

on the level of the point estimates themselves. In other words, we are less interested in

stating the avoided deforestation is X% in a particular subgroup, and more interested in

saying that avoided deforestation in subgroup A is greater than in subgroup B. Unobserved

heterogeneity would be a concern in our analyses only if it were to di¤erentially a¤ect the

subgroup pairs such that it caused the ordering of subgroup estimates to switch. We cannot

think of a simple story of systematic unobserved heterogeneity that would act di¤erentially

within subgroup pairs (e.g., on �at lands, decision makers systematically sought out sparse-

canopies among forests observably similar on the dimensions we match, and on steep lands

they systematically sought out thick-canopies). Thus, even if unobserved heterogeneity

were to bias the underlying average treatment e¤ect on the treated estimates of the original

samples, it is unlikely to a¤ect our estimated ordering of subgroup pairs.

5 Discussion

Recent studies have found what appears to be evidence of so-called �win-win� outcomes

associated with protected areas in Costa Rica. Protection has been moderately e¤ective, on

14To directly assess the potential source of bias from not using continuous crown cover data, we would
need continuous baseline data, which we lack. However, we obtained such data for the period 1992 -1993
from the Global Land Cover Facility (Earth Science Data Interface). If we assume that any canopy cover
bias in decisions to protect forests before 1980 would continue into the early 1990s, we can use these recent
data to test whether canopy cover percentages were similar between protected and unprotected plots at
baseline. We measure canopy cover inside and outside of protected areas established between 1991 and
1995. These data (measured at 1square km-level) range from 0-80%. Because there is no variation above
80% (the threshold for our binary indicator), we use the next quintile (60-80%). If forest canopy percentage
a¤ects selection into protection, we should observe a di¤erence in the mean canopy cover for protected and
unprotected units. We do not observe any meaningful di¤erence: mean canopy cover percentage within
protected areas is 69.75% and in unprotected areas is 69.6%.
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average, in preventing deforestation (Andam et al. 2008) and in alleviating poverty (An-

dam et al. 2010). However, these impact estimates ignore the potential for heterogeneous

responses to protection for di¤erent subgroups. Understanding heterogeneous treatment

response is important from the perspective of a social planner because conditional assign-

ment of protected areas can lead to greater average treatment response for the population

(Manski 2005).

Using new quasi-experimental methods, we estimate the heterogeneous subgroup im-

pacts of protected areas established prior to 1980 on deforestation and socioeconomic out-

comes in Costa Rica. For nearly all the biophysical and demographic subgroups we de�ne,

we �nd statistically signi�cant, and policy-relevant, evidence of heterogeneous responses to

protected areas. Avoided deforestation is highest when protection is assigned to lands that

are highly suitable for agriculture, are far from major cities and infrastructure, or where

a high percentage of adults are employed in agriculture: about three times higher than on

lands that exhibit the opposite characteristics. However, poverty alleviation is highest when

protection is assigned to areas with the opposite characteristics. In other words, the char-

acteristics associated with the most avoided deforestation are the characteristics associated

with the least poverty alleviation.

Caution should be observed when using our results to guide future conservation plan-

ning in Costa Rica. We estimated the average treatment e¤ects of protection on protected

forests in each subgroup impacts. Thus extrapolation should only be made to areas that

are observably similar to the protected ecosystems in this study. Given that the covari-

ates associated with areas already protected are most likely very similar to areas that will

be chosen for protection in the future, basing extrapolation on the counterfactual samples
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used in this study may not be unreasonable. Future analyses, however, should estimate the

average treatment e¤ect on the control (ATC) to provide insights into the way in which

protection anywhere in Costa Rica that is currently unprotected would a¤ect deforesta-

tion and poverty. As noted in Andam et al. (2010), future analyses should also focus on

the impacts of alternative management strategies, such as community management (e.g.,

Somanathan, Prabhakar, and Mehta 2009), and on elucidating the mechanisms through

which protection has reduced poverty (e.g., tourism, infrastructure development, ecosystem

services). Our analysis provides a useful foundation for such analyses by highlighting the

spatially heterogeneous impacts of protection.

Although historical treatment responses do not necessarily predict future ones, our re-

sults indicate that prudent conservation planning would pay special attention to covariates

related to agriculture. For example, decisionmakers may wish to look at the composition of

employment in the surrounding areas before assigning protective legislation to an ecosystem.

If protecting ecosystems in areas with a large percentage of adults employed in agriculture

cannot be avoided, additional interventions, such as performance payments for environmen-

tal services to local communities, may be warranted to contribute to poverty alleviation

goals.

One of the goals set forth at the Fifth World Parks Congress in 2003 is that protected

areas should do no economic harm to surrounding human populations (Adams et al. 2004).

The results to date indicate that, on average, Costa Rica�s protected area system achieved

this goal. Equally important, the results support claims that protecting ecosystems in

high-poverty areas can, on average, achieve environmental gains and alleviate poverty. Yet

the amount of avoided deforestation generated by Costa Rica�s protected area system was
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modest. As in other nations, Costa Rican protected areas tend to be assigned to ecosystems

with low economic returns from conversion.15 Our study shows that the same factors that

have limited the conservation e¤ectiveness of protected areas may have improved the social

welfare impacts of these areas. This observation implies that �win-win�e¤orts to protect

ecosystems and alleviate poverty may be possible when policymakers are satis�ed with low

levels of each outcome, but tradeo¤s exist when more of either outcome is desired. Without

innovations in conservation technology, having more of one will imply having less of the

other.
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6 Appendix

6.1 Areal Interpolation

Costa Rica�s census tract boundaries are not spatially consistent across time. The number

of census tracts increases from 4,694 in 1973 to 17,625 in 2000. Furthermore, the addition of

census tracts over time did not follow any discernible pattern, the newer subdivided census

tracts do not necessarily fall within the boundaries of the old census tracts. This poses a

problem for the comparability of the demographic data over time. In order to make the 2000

data comparable to the 1973 data, the geographic method of Areal Interpolation (Reibel

2007) is implemented.

Areal interpolation is a GIS method by which demographic variables are made compa-

rable across time given changes in political boundaries. For our analyses the 1973 census

tracts are used as baselines. Therefore, areal interpolation assigns weights (assuming a uni-

form population distribution) based upon the amount that the 2000 census tracts overlap

with the 1973 census tracts. These weights are used to interpolate the 2000 populations that

reside within the 1973 census tract boundaries. The resulting data set contains the original

1973 demographic data according to its native boundaries and the 2000 demographic data

distributed as if the census tract boundaries had not changed since 1973.

6.2 Poverty Index

Costa Rica does not have properly disaggregated income data that date back to 1973 (Gin-

dling and Terrell 2004). To measure the socioeconomic impacts of protected areas an alter-

native metric is necessary. Cavatassi et al. (2004) suggest the use of principal components
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analysis to form a poverty index. The method uses indicators from the respective censuses

that are believed to a¤ect poverty to create a measure that is spatially and temporally

comparable. The variables included in the poverty index are: (* indicates a percentage):

men in total population*, families who cook with coal or wood*, families without washing

machine*, families without refrigerator*, people who are employed and get a salary as job

remuneration*, illiterate population aged 12 or more*, household dwellings without connec-

tion to private or public water system*, household dwellings without sewers*, household

dwellings without electricity*, household dwellings without telephone*, dwellings with earth

�oor*, dwellings in bad condition*, dwellings without bathroom*, dwellings without access

to hot water*, dependency ratio, average number of occupants per bedroom, average years

of education per adult. A similar measure was employed by the Mexican government in the

analysis of the PROGRESA program (Cavatassi et al. 2004).
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Variable Description Mean Median Range

High Productivity Land Land Use Capacity I, II & III
L d it bl f i lt l d ti

Standard 
Deviation

Land suitable for agricultural production.
May require special land and crop
management (classes II & III).

Medium-High Land Use Capacity IV
Productivity Land Moderately suitable for agricultural

production; permanent of semi-permanent
crops

M di L L d U C i V VI & VII

0.008 0 0.09 0-1

0.0289 0 0.167 0-1

n
 C

ov
ar

ia
te

s

Medium-Low Land Use Capacity V, VI & VII
Productivity Land Strong limiting factors on agricultural

production.

Distance to Forest Edge Distance (km) to the edge of the forest in
1960

Distance to Road Distance (km) to nearest road in 1969. 16.99 14.28 11.62 0.04-53.31

Distance to Major City Distance (km) to nearest major city: Limon

2.79 2.35 2.19 0.0001-11.2

0.0802 0 0.272 0-1

D
ef

or
es

ta
ti

on

Distance to Major City Distance (km) to nearest major city: Limon,
Puntarenas or San Jose.

Baseline Poverty Poverty index measured in 1973. 14.9 15.8 6.43 -6.4-28.9

Forest Cover Percentage of census tract occupied by forest
in 1960.

% High Productivity Percent of census tract occupied by Land
Land Use Capacity I, II & III land.

77.4 56.9 49.53 9-180.5

0.412 0.383 0.342 0-1

0.118 0 0.22 0-1

at
es

%Medium-High Percent of census tract occupied by Land
Productivity Land Use Capacity IV land.

%Medium-Low Percent of census tract occupied by Land
Productivity Land Use Capacity VI, VII or VIII land.

Distance to Major City Average distance (km) from each 300m2 land
plot within a census tract to nearest major
it Li P t S J

0.295 0.04 0.377 0-1

0.347 0.156 0.387 0-1

57.3 49.7 41.28 0.0037-208

S
oc

io
ec

on
om

ic
 C

ov
ar

ia

city: Limon, Puntarenas or San Jose.

Roadless Volume The sum of the product of area and
distance to nearest road (1969) for every
square with side length 100m within the census
tract.

308,000 66,400 699,100 0.28-7,590,000

Table 1. Summary statistics and description of covariates used as controls to form counterfactual samples.

S
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Subgroup Pair Threshold Y T=1 Ŷ T=0 τ s=H Y T=1 Ŷ T=0 τ s=L Y T=1 Ŷ T=0 τ s=H Y T=1 Ŷ T=0 τ s=L

0.212 0.535 -0.324 0.108 0.202 -0.094 1.62 0.003 1.617 -2.22 -0.528 -1.693
[104] [104] (0.077) [2702] [2702] (0.017) [22] [301] (0.663) [209] [672] (0.359)
0.098 0.112 -0.014 0.132 0.291 -0.159 -3.9 -2.3 -1.62 1.03 1.25 -0.228
[1624] [1133] (0.023) [1139] [1656] (0.019) [135] [284] (0.244) [96] [689] (0.301)
0.141 0.294 -0.153 0.081 0.131 -0.05 2.86 2.81 0.053 -3.82 -2.58 -1.247
[1418] [1377] (0.016) [1388] [1429] (0.015) [67] [298] (0.511) [164] [675] (0.223)
0.107 0.24 -0.133 0.119 0.164 -0.045 -1.41 -1.41 0.008 -2.45 -0.643 -1.802
[1660] [1676] (0.019) [1146] [1130] (.019) [131] [487] (0.267) [100] [486] (0.335)
0.123 0.239 -0.116 0.082 0.162 -0.08 0.968 2.06 -1.088 -4.51 -3.83 -0.684
[2002] [2002] (0.018) [804] [804] (0.024) [112] [564] (0.301) [119] [409] (0.208)

[Number of Obsaervations in Subgroup]
(Standard Errors)

Land Use 
Capacity

 τ s  is the subgroup ATT calculated, τ = Y T=1  - Ŷ T=0 .

Distance To 
Major City

%Agricultural 
Workers

Initial Poverty

57km

13%

Deforestation Socioeconomic
High Baseline Levels Low Baseline Levels

23%

High Baseline Levels Low Baseline Levels

High

15

Slope

Notes: Y  denotes the outcome (deforestation, poverty index), T=1  denotes protected units; T=0  denotes matched unprotected units.
Ŷ T=0  is imputed according to equation (2).

Table 2. Estimated average treatment effect on the treated (ATT) by subgroup pair for covariates listed in section 2.2.
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Figure 1. Estimated heterogeneous impacts of protection on avoided deforestation and poverty. 
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