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1 Introduction 

Much of the last remnants of suitable habitat areas for many rare, threatened, or endangered 

species in North America are in the vicinity of military installations in the U.S. While some 

habitat deterioration may have been caused by military training, it is often argued that the 

military control actually prevents those areas from destructive urban and agricultural 

development. Besides isolation of the lands from alternative economic uses, the Department of 

Defense (DoD) allocates a significant amount of human capital and land for conservation efforts 

toward protecting and managing wildlife habitat in and around military installations. In 2006, the 

DoD spent $4.1 billion on environment related expenses of which $1.4 billion was for 

environment restoration and $204.1 million was for conservation [1]. On the other hand, new and 

conventional training requirements increase the importance of military lands and the pressure to 

manage federal lands in the best possible way to balance these competing objectives and land 

uses. As an alternative to costly arrangements, such as purchasing land or acquisition of property 

rights, more effective utilization of the existing lands for conservation and military purposes can 

be accomplished by designing an optimum landscape that best addresses conservation and 

military training area needs. This paper explores alternative optimum land use strategies by 

incorporating various ecologically important considerations along with military training 

requirements.

The land use decision problem described above can be solved using optimization methods. The 

specific problem may be different from one case to another depending on unique characteristics 

of each installation in terms of military training and environmental/ecological needs. In this 

paper we consider a particular military installation, namely Ft. Benning in Georgia. Ft. Benning 
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currently has an extensive population of Gopher Tortoise (Gopherus polyphemus), referred to as 

GT, and Red Cockaded Woodpecker (Picoides borealis), referred to as RCW, both listed as 

species at risk. The RCW is federally endangered and the GT is listed as a species at risk. Ft. 

Benning is currently undergoing an expansion of its mission, and new firing range and maneuver 

areas are being constructed for emerging needs. In an effort to best manage the GT and the RCW 

populations, Ft. Benning is looking into the optimal selection of habitat areas that can be made 

available for the protection of these two species. Some of the proposed new training areas are 

heavily populated by GT’s (see Figures 1.b and 2.a); therefore the land managers are considering 

relocating GTs to lesser used areas to be selected within the boundaries of the installation. 

In this paper the term ‘Conservation Management Area (CMA)’ is used to refer to a conservation 

reserve, a designated tract of land on which military activities are normally less intense and the 

land is better suited for use as GT habitat. All such areas will still be available for appropriate 

military training use; however these areas will be selected so as to be among the least disturbed 

areas. A ‘CMA network’ refers to a collection of multiple CMAs that together serve the 

conservation purpose.  Since GT is a ground-bound species, the selected areas should be as 

‘compact’ as possible, preferably ‘contiguous’, in order to allow movement of GT in the 

protected areas and facilitate interaction within and among individuals in those areas. A compact 

CMA would also be easier to fence, if needed. Furthermore, it would be desirable to minimize 

the relocation movement distances and also to have the CMAs to form a clustered network in 

close proximity to each other in order to promote interaction between multiple populations1. We 

                                                
1 In some cases habitat areas are desired to be far enough to maintain independence and minimize the risk of 
outbreak of diseases. With appropriate modifications, the model can incorporate this consideration. 
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determine optimal relocation of the affected GT populations from the areas that will be most 

heavily affected by the additional military training demands. 

In light of the discussion above, specifying the most suitable CMAs must involve various 

important spatial considerations including the following: i) each designated CMA must have a 

minimum size, either specified in terms of the land area or in terms of the GT population aimed 

to be protected in that CMA; ii) each CMA should preferably have a compact (circular or square-

like) shape; iii) the relocation distances should be minimized to facilitate relocated GT’s 

adaption to their new habitat, iiv) if multiple CMAs are to be configured, they must be close to 

each other in order to promote interaction between multiple populations. For this purpose we 

develop four linear mixed-integer programming models that address the above issues. As will be 

elaborated in the next section, the models are largely similar; yet they have distinct features that 

are needed to reflect the above spatial requirements considered in site selection. The models are 

applied to data from Ft. Benning and the empirical results of our analysis are presented together 

with a discussion of the results.

2 Materials and Methods

The current evaluation is essentially identical to that involved in the design of “reserves” for 

protection of certain sensitive species, where the use of mathematical models goes back to the 

late 1980’s2 [2]. The use of the term “reserve,” however is not appropriate when dealing with 

military installations, where protection of certain species and considerations for their 

management are always subject to mission requirements and Congressional authority. Therefore 

                                                
2 Initial studies used mostly heuristic methods for this purpose [3-7]. Heuristic procedures may occasionally yield 
optimum solutions, but more often they lead to significantly suboptimal outcomes [7 – 10].
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we use the term “CMA” with regard to the application and the term “reserve” with regard to the 

theoretical modeling analysis. In its simplest form, the reserve design problem is stated as 

selecting a minimum number of habitat sites that contain populations of a specified set of 

species, or maximizing the number of species that can be protected under a conservation budget 

constraint or area limitations. Both problems are formulated as linear integer programs (IP), 

being special cases of the prototype ‘set covering’ problem and the ‘maximal covering’ 

problem[6, 7, 11 – 17]. Typically, both types of optimum site selection models result in highly 

sparse and dispersed reserve configurations. Recognizing this deficiency, several integer 

programming models have been developed in recent years to incorporate various forms of spatial 

considerations, such as reserve connectivity, compactness, fragmentation, buffer zones, etc.[18 –

26; see 27 for a review]. This type of consideration generally requires a much more complex 

mathematical formulation and large-scale models. As discussed earlier, in the problem addressed 

here, spatial coherence of the designated GT CMAs is particularly important. We present 

alternative formulations below each incorporating a different spatial criterion to determine an 

optimal assignment of areas to conservation based on the site characteristics (habitat suitability) 

and geographical locations. 

The models that will be presented below have a common feature in that they consider a grid 

partition which comprises of square land parcels3, each of which will be referred to as a ‘site’. 

Each site is assumed to be an independent decision unit. When selecting sites to configure a 

CMA the locations of individual sites relative to other selected sites and their contributions to the 

conservation of GT are taken into account simultaneously. More specifically, a CMA is 

                                                
3 The square-cell assumption is not restrictive. The approach developed here can be applied to other geometric 
forms, such as triangles, rectangles, polygons, or even irregular forms.



6

characterized by a central site and a set of sites packed (clustered) around that central site. The 

problem is then to determine the central site of each CMA and assignment of individual sites to 

the CMA in an endogenous way while satisfying the conservation requirements and considering 

alternative spatial criteria in cluster formation4. For each specification of the spatial criteria 

considered in site selection, we formulate a linear integer program. The procedures and algebraic 

details of the models are described explicitly below. 

We denote the set of all sites by L and denote individual sites by Lmlk ,, . Site selection and 

assignment to a CMA is represented by a binary variable Xlk, where Xlk =1 if site k is selected and 

belongs to the CMA centered at site l and Xlk =0 otherwise. Note that by construct Xll =1 for all 

central sites l, i.e. the central site of each CMA must belong to that CMA. We also note that sites 

in the most heavily used military training areas (existing or new) are not considered for inclusion 

in any CMA, therefore we set Xlk =0 if site k is part of a training area. The symbol dlk denotes the 

distance between site l and site k, and ek denotes the existing population of GT in site k. The 

number of CMAs to configure is denoted by n; which is specified exogenously, but varied when 

designing alternative optimal configurations. Each CMA is required to sustain a minimum GT 

population, denoted by p. Finally, the total GT population in all the selected areas is represented 

by tp.

2.1 Base Model

We first address the problem of constructing n compact CMAs, each covering a minimum 

sustainable GT population and collectively covering a desired GT population. Here we define 

                                                
4 This model is an extension of classic p-median problem [28]. Similar models for clustering have been used 
previously in the literature of reserve design, business districting and political districting [21, 27].
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compactness of a CMA as the overall ‘closeness’ of all sites in it. We measure this by the sum of 

distances from all sites to a central site in each cluster, which must be minimized to the extent 

possible5. An algebraic model that serves this purpose, which will be referred to as the ‘Base 

Model’ from here on, is given below.

Minimize   *
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The objective function involves the distances from individual sites in each CMA to the ‘center’

of that CMA, which in turn is summed over all CMAs. Constraint i) ensures that n CMAs are

created. Constraint ii) states that each site can belong to at most one CMA centered at some site 

l. Constraint iii) requires that each CMA supports a population that exceeds the minimum 

sustainable size6, while constraint iv) ensures that all CMAs collectively support a desired total 

population. Finally, constraint v) implies that if site k is selected and assigned to the central site l, 

i.e., Xlk =1, then a CMA centered at site l must be formed, i.e. Xll must be 1, otherwise we have

                                                
5 Compactness is not a well defined concept. Note that the absolute value of the compactness measure defined here 
may not mean much just by itself, rather it has to be considered together with the size of the reserve (number of sites 
involved). This is because a reserve with only a few distant sites may have a smaller total distance value than a 
reserve with too many tightly packed sites, whereas in practice the latter should be considered more compact. 
Although not being fully satisfactory, this definition well serves the specific purposes of the present study. 
Minimizing the total distance typically results in a circular and connected reserve configuration. 
6 This constraint can also be expressed in terms of a minimum number of parcels or CMA if the effectiveness of 
conservation effort is related to the reserve size.
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Xlk =0. We note that the sites that are part of the existing and proposed intensive use military 

training areas are not eligible for selection, therefore for all such sites we set Xlk =0.

The above base model does not incorporate the relocation distances and does not consider the 

location of individual CMAs relative to other CMAs in the network. We address these issues 

using a mathematical programming framework and present alternative models to identify the 

most suitable habitat areas that should be set aside as designated GT habitats.

2.2 Optimal Relocation Model

As mentioned at the outset, over the next few years a significant amount of new land will be 

utilized as training areas within Ft. Benning. Figure 1 and Figure 2 display the nature of the 

problem. The current military training areas are shown in Figure 1.a, and the planned intensive 

training areas to be added are given in Figure 1.b. As can be seen in Figures 1.b and 2.a, the new 

military training areas contain many GT populations. Therefore those populations have to be 

moved to new habitat areas that will be selected from among the areas in Figure 2.b that are not 

planned for additional training uses. The relocation model seeks to select the best CMAs and 

determine optimal relocation of the existing GT populations that are within the planned new 

military training areas. The selection of those parcels must be done in such a way that: i) the new 

protected CMAs must be as compact as possible; ii) each CMA must be large enough to include 

a sustainable GT population and all CMAs collectively accommodate the GT populations 

currently located within the planned expansion areas; and iii) the existing populations are moved 

by minimal distances. The first two criteria are met in the Base Model formulation. The last 

criterion aims to maximize the survival likelihood of the GT populations that are relocated with 
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the assumption that if the relocation distances are small the GT populations are more likely to 

adapt to their new environment which would most resemble their original environment7. 

In addition to the notation used earlier we define a new binary variable Ylm, where Ylm = 1 if the 

GT population in site m is moved to the CMA centered at site l. We note that the entire 

population in a given site is moved together to a new area, i.e. no partial relocation is allowed. 

We first introduce a Relocation Model which solves the relocation problem without 

incorporating movement distances and then expand the model to include relocation distances and 

meta-clustering considerations. The following model, which we call Relocation Model-I, solves 

the optimal site selection and relocation decisions:
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7 The relocation distances in the model can be replaced with costs attributed with movement. Although relocation 
(travel) costs were not considered in this application, it can be a significant consideration in many other applications. 
The model can be easily modified to directly minimize the travel costs by replacing dlk in the objective function 
with clk, where clk is the travel cost between site l and site k.
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Several of the constraints given above have already been discussed as components of the 

Base Model; therefore we describe only the new constraints here. Constraint iv) ensures that for 

each CMA, the sum of the existing GT population and the new GT populations moved to that 

area does not exceed the carrying capacity of that CMA, which is the sum of the carrying 

capacities of individual sites (denoted by ck ) included in that CMA. In this particular application 

the habitat suitability of each site is represented by an index created from the GT suitability map 

(Figure 2.b). Constraint vi) states that the GT population in site m can be moved to a CMA with 

center at l (i.e. Ylm = 1) only if such a CMA is indeed formed (i.e. Xll = 1), otherwise we must 

have Ylm = Xll = 0. Constraint vii) ensures that the entire population in each new military training 

site is moved to one and only one CMA. The last constraint was added because GT’s are 

believed to have social interactions; therefore keeping neighboring populations together will 

reduce the negative impact of relocation.

2.3 Minimum Distance Relocation Model

We extend the above model by adding a movement distance term to the objective function as : 

Minimize   * *lk lk lm lm
l k l m

X d Y d 

The objective function consists of two parts. The first part is the sum of distances from sites in 

the selected CMAs to the centers of those CMAs, as in the Relocation Model-I. The second term 

is the total distance that all GT populations are moved. It may or may not be possible to 

minimize these two terms at the same time. The extended model, which we call Relocation 

Model-II, explicitly considers the trade-off between CMA compactness and the relocation 

distances in a unified framework and determines a compromise solution.
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Although this model considers the locations of selected sites relative to the central sites to which 

they are assigned, it does not consider the location of the CMAs relative to each other or their 

locations with respect to the surrounding land. Therefore, the model is indifferent between two 

CMA configurations where one CMA network includes closely placed multiple CMAs while the 

other includes remote CMAs as long as the specified conservation targets are satisfied and the 

movement distances are minimized. Incorporating such aspects may have significant impact on 

site selection decisions. These issues are addressed in the modified meta-clustering formulations 

below.

2.4 Meta-Clustering

The purpose of this model is to extend the Base Model to incorporate distances between multiple 

CMAs so that not only are the sites in each CMA compact but also the CMAs themselves are 

close to each other. We first define the distance between two CMAs as the distance between their 

centers. Inter-habitat distances can be incorporated in different forms. Here we present two 

formulations; first we introduce Meta-Clustering Model I, a model that places an absolute 

distance criterion on meta-clustering by adding an additional constraint; second we present Meta-

Clustering Model II, a multi-objective approach that uses a new variable to identify a meta-

center and incorporates distances from individual CMA centers to the meta-cluster center. 

In the first approach described below the objective function remains unchanged from the 

Relocation Model-I. An additional constraint restricts the distance between each pair of CMAs to 

a specified maximum distance, denoted by d . Thus, this approach groups CMAs together and 
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leads to a compact constellation of CMAs if d is chosen sufficiently small8. The new constraint 

is described below:

ix)      *( -1)   for all lk ll kkd X X d l k  

To explain how the constraint works, consider the case 1== kkll XX for some pair of sites l and 

k, which means that two CMAs are centered at those sites. Then, we must have lkd d , i.e., the 

central sites of those CMAs cannot be far from each other more than d . For all other 

combinations of kkll XX and , i.e. (0,0)and(0,1),(1,0),=)X( kkll ,X , the constraint becomes 

redundant. Therefore, only those sites that are closer to each other than d qualify as CMA

centers and the model selects the best ones in light of cluster compactness and habitat 

suitability9. 

                                                
8 An alternative approach to the problem is to apply the method used in the Base Model for clustering the cluster 
centers, namely we may determine a ‘universal center’ for the entire reserve system, which may be any site or 
required to be a cluster center itself) and minimize the sum of distances from the cluster centers to that site along 
with the sum of distances from individual sites to their assigned cluster centers. This approach requires substantially 
more variables and constraints in addition to the ones involved in the Base Model. In order to identify the universal 
center and compute the distances from all cluster centers to that site we introduce a binary variable Ylm where Ylm=1 
if parcels l is the universal center and m is a cluster center of a reserve, otherwise Ylm=0. The requirement of one 
central site for the entire reserve system is ensured by the constraint: 1=∑

l
llY , and the assignment of cluster centers 

to the universal center is governed by mlYY lllm ,allfor    . Finally, the Y variables are related to previously defined 

X variables through the constraints mlXYXY mmlmlllm ,allfor     and  , which imply that in order to have Ylm=1 we 

must have 1 mmll XX , namely there must be two clusters centered at sites l and m, respectively. Minimization 

of
lm

ml
lmlk

kl
lk YdXd *∑*∑

,,
 tends to select clusters as closely as possible. The first term in the objective function is the 

sum of distances from all selected parcels to their respective cluster centers, while the second term is the sum of 
distances between cluster centers to the universal cluster center. If the total distance between cluster centers is 
relatively small compared to the sum of total distances between selected sites and their cluster centers, one may 
consider a weighted average of the two total distance terms where the weights are positive scalars and represent the 
importance of the two attributes (i.e, compactness of the entire reserve vs. compactness of individual reserves).
9 Reversing the direction of the inequality in the last constraint spreads clusters in the area and moves them away 
from each other by a distance exceeding d , which aims to reduce the likelihood that the entire reserve system can be 
affected by an outbreak of diseases. 
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For the second meta-clustering approach, in addition to the notation used earlier we define two 

new binary variables10 Zlk and Dl, where Zlk = 1 if site l represents the meta-center and a CMA 

centered at k is assigned to the meta-center at l; and Dl =1 if parcel l serves as the meta-center. 

The objective function in the Relocation Model-I is modified by including a term that 

incorporates the distances from the meta-center to the centers of the selected CMAs. The updated 

objective function takes the form: 

Minimize   * * lk lk lk lk
l k l k

X d Z d

where the new second term is the sum of distances between selected CMAs’ centers and the 

meta-center and 0  is the relative weight assigned for the meta-clustering objective (or a 

penalty parameter which promotes the minimization of the total inter-CMA distances, thus 

improved clustering. Therefore the model explicitly considers the trade-off between CMA

compactness and meta-clustering of the CMAs and determines a compromise solution. The 

following three additional constraints are introduced to govern the selection of the meta-cluster. 
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10 Binary variables extend the size of the branch and bound tree, which typically leads to a longer computation time. 
Instead of L2 new binary Zlk variables we may define Zlk as a positive variable and use 2L binary D variables to 
ensure that Zlk takes binary values as 
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Constraint ix) ensures that there is only one site selected as the meta-cluster center. Constraint x) 

ensures that if some site k is assigned to the meta-center centered at l, in which case we 

have lk
k

Z ≥1, then Dl = 1, that is site l has to be the meta center. Constraint xi) ensures that if k 

is a habitat center, Xkk = 1, then it is must be assigned to the meta-center l and the distance 

between sites l and k is accounted for in the objective function. 

3. Data 

The current and future military training areas were obtained as raster files from Ft. Benning and 

are shown in Figure 1.a and 1.b. The habitat areas suitable for GT were obtained as raster files 

from the national biological information infrastructure [29]. The above raster files were 

converted to ESRI shape files using ARC GIS 9.2. The resulting shape file is shown in Figure 

2.b. A 40x40 grid file, where each grid was 900m by 900m, was created using Geoda and the 

grid shape file was spatially joined with the above shape files using spatial join tool in ARC GIS. 

The spatial join gives the grid file the attributes of the shape file. To ensure that each grid cell 

represents a density of the original data, the “sum” option was used when joining the GT burrow 

data and the habitat suitability data. 

The grid cell values for figure 1 are specified as binary values (grid cell value = 1 if cell includes 

a base area or a planned expansion area). The grid cell values for figure 2 are given as an index. 

For figure 2.a, each grid cell value is the sum of the number of observed GT burrows within the 

grid cell, the index ranging from 0 to 350. For figure 2.b, the grid cell value is the sum of the 

suitable points (the GT suitability raster map was converted to point shape file) within the grid 

cell. The suitability index ranges from 0 to 864. The GT population density parameter δ is used 
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with this grid cell value to reflect the sustainable number of GT’s for each CMA. The population 

density is introduced into the model by multiplying population of GT in site k, ek, by δ. A one-

hectare land parcel can support between 2 to 4 GT’s. This is equivalent to supporting between 

180–360 GT per site at the 900m x 900m resolution. Therefore the density parameter is set to 0.5 

for the empirical analysis. 

4. Empirical Results and Discussion

This section presents the results of the Relocation Model-I, Relocation Model-II, and the two 

meta-clustering models. All models were solved using GAMS/CPLEX version 21.6 on a PC with 

an Intel Core 2 Duo processor and 2 GB of RAM running Windows XP.

The total population of GT that may need to be relocated is estimated to be at least 1800. This is 

based on the actual burrow counts in the areas that will be allocated exclusively to military uses 

(see Figure 1.b). Because there are existing GT populations in the potential CMAs we needed to 

consider an overestimate of this figure when restricting the minimum population size that the 

entire conservation area should hold after relocation (i.e. the parameter tp in constraint iv) of 

Model-4). Here we assumed that the final total population in all CMAs (including the existing 

GT populations and the relocated populations) is at least 4000. In theory, the GT populations that 

are currently located in the planned military expansion areas can be moved to a single large 

CMA or multiple smaller CMAs (all located outside the area that will be required for intensive 

military use). We require the CMAs to be as compact as possible and assume that sites belonging 

to the intensive-use maneuver zones are not eligible for selection. The model is solved with 

various parameter specifications for the number of CMAs (n). The reasons for specifying more 
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than one CMA are three-fold. First, we may want to separate the relocated GT population into 

smaller populations, each being located in a different part of the CMA, to safeguard them against 

potential diseases that may occur in on a protected area and spread to the other areas. Second, 

one big CMA requires movement over large distances of several populations located in different 

parts of the new training zones, which might create a more challenging adjustment problem 

particularly for the populations relocated to distant areas. Third, setting aside one large 

conservation area reduces the flexibility for the military when further expansion of training areas 

is needed in future. These problems can be alleviated or reduced by designing multiple small 

conservation areas. 

In all of the runs described below the minimum population for each CMA was specified as 750 

and the minimum total population was specified as 4000. The Relocation Model-I and 

Relocation Model-II were solved with one, two, three and four CMAs. The two meta-clustering 

models were solved each with four CMAs. These numbers are specified arbitrarily to illustrate 

the workings of the models and demonstrate the trade-offs between different spatial criteria.

4.1 Base Relocation Results

The Relocation Model I results, without spatial considerations other than compactness of the 

selected CMAs are shown in Figure 3 for 1, 2, 3 and 4 CMAs. Comparing the results in Figure 3 

with the suitability map given in Figure 2.c illustrates that the Base Model simply selects from 

amongst the most densely packed and best available sites to form contiguous and compact 

CMAs. The optimal solution with one large conservation area (Figure 3.a) shows that this area

would be located at the southeast corner of the installation. However, the compactness of the 
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CMA is poor; the selected sites (16 total) are meandering in shape. This result is driven primarily 

by the fact that the model is forced to choose one cluster of habitat sites and the only available 

good quality sites that are not currently populated heavily by GT are in that part of the 

installation. The good quality sites in other parts of the installation are not in the solution due to 

three reasons: i) those sites are under extensive military use, ii) a high density of GT currently 

inhabiting the sites would not allow relocating new GT’s into those areas, or iii) those sites are 

located far apart from each other. 

For the two-CMA case the model chooses two clusters with four and eight sites, respectively 

(Figure 3.b). The three-CMA case selects a total of ten sites (Figure 3.c), and the four-CMA case 

requires a total number of 11 selected sites (Figure 3.d). Unlike the one big CMA scenario, the 

two, three and four-CMA configurations comprise of compact clusters of sites since instersite 

distances are accounted for each cluster separately, rather than the distances between all selected 

sites, which allows the model to choose closely located sites from multiple locations. Based on 

these results, we may conclude that if the size of the total area to be CMAs is a concern, forming 

three CMAs, two located in the southwest and one located in the north-central areas, would be 

the best strategy as it involves the minimum number of sites (=10).

4.2 Minimum Relocation Distance Results

The results of the minimum relocation distance model are shown in Figure 4. The optimal 

solution with one large conservation area (Figure 4.a) shows that this area would again be 

located at the southeast corner of the installation (although slightly different from the solution 

displayed in Figure 3). The compactness of this CMA is even poorer, where among the 16 
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selected sites one site is disjoint from the other sites. Besides the reasons that were discussed 

above, minimizing the relocation distances as an additional consideration works against the 

primary objective (i.e., compactness) when only one cluster is being selected.

The results for two CMAs are shown in Figure 4.b. The change in the CMA locations is dramatic 

when compared to Figure 3.b. Incorporating the relocation distances in the objective function 

(besides compactness) moves the selected clusters towards the top center and bottom center of 

the installation. None of the southeastern sites was chosen; instead 8 sites in the north and 11

sites in the south are selected to form the two CMAs. Compared to Figure 4.a, the factors behind 

this selection are: i) minimizing the movement distances makes the sites in the those two 

locations more attractive than before because they are closer to the current GT habitats; ii) the 

smaller population size requirement for individual CMAs allows selecting smaller CMAs with 

better habitat quality, which was not possible in the previous case (Figure 4.a). 

The results for three and four conservation clusters are shown in Figure 4.c and Figure 4.d. Once 

again a dramatic change occurs in the CMA configuration compared to the results in Figure 3.c 

and Figure 3.d. For the three-CMA scenario, the model chooses 17 sites which are centrally 

located and relatively close to the area where GT’s are to be relocated from. The model does not 

choose any site from the highly suitable south-east corner, since the movement distances to those 

sites are higher. For the four-CMAs, scenario, the model chooses a total of 16 sites, again among 

the centrally located sites. The four sites in the southeast (best ones from the solution with one 

large CMA cluster) form a CMA in that area, which is much smaller than the first solution 

however, while three small CMAs are formed in the northeast, central and southern parts of the 



19

installation. This result is driven again by the habitat quality and relaxed CMA size limitation as 

well as the preferred compactness property and the aim to reduce the total relocation distance. A 

clear distinction between the CMAs seen in Figure 4 and the ones in Figure 3 is that the four 

CMAs found without consideration of relocation distances are much more compact. This is an 

intuitive and expected result, indicating the trade-offs between competing objectives, namely 

relocation distances and compactness of individual CMAs. Another evident distinction between 

the two sets of CMA configurations in Figures 3 and 4 is that the relocation model selects larger 

clusters of sites compared to the model that considers compactness only. This result is driven 

jointly by the relocation distances and habitat qualities of individual sites. More specifically, 

consideration of relocation distances favors the sites that are closer to the current GT habitats, 

which are (in this data set) of poorer quality than the remote but good quality sites shown in 

Figure 3. It should be noted that the weights assigned to the CMA compactness and total distance 

of relocation objectives heavily influence the outcomes. Assigning a higher weight to 

compactness results in more compact and usually contiguous, CMA configurations; on the other 

hand, placing a higher weight to the relocation distance shifts the CMA locations towards the 

planned military training areas, which typically reduces the compactness of individual CMAs. 

4.3 Meta-clustering of Multiple CMAs

The results of the Meta-Clustering Model I are shown in Figure 5. To highlight the role of meta-

clustering, only the results for four CMAs and four different inter-CMA maximum distance 

specifications ( d ) are presented. We measure the distance between any two CMAs by the 

Euclidean distance between central sites of those CMAs. The four distance specifications we 
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considered in the applications whose results are shown in Figure 5 were d equals (a) 30 cells 

(27 km), (b) 25 cells (22.5 km), (c) 20 cells (18 km), and (d) 15 cells (13.5 km). 

The results for a maximum inter-cluster distance of 30 cells are presented in Figure 5.a. The 

results are identical to the base case results for four CMAs implying that the maximum distance 

constraint is not actually binding. Decreasing the maximum distance specification alters the 

meta–clustering solutions as displayed in Figure 5.b-d. For instance, reducing the maximum 

inter-cluster distance from 30 to 25 cells (Figure 5.b) moves the southwest cluster to the 

southeast, a region that has a large aggregation of suitable sites. In both cases a total of 11 sites 

are selected for the four CMAs, but the selected CMAs are much closer to each other (compare 

Fig. 5.b with Fig. 5.a). Figure 5.c displays the results for a maximum inter-cluster distance of 20 

cells. Two of the southwest CMAs are now moved the northeast area, because of the availability 

of equally suitable sites in that area within close proximity to each other. Figure 5.d displays the 

results for a maximum inter-cluster distance of 15 cells. This forced the selected CMAs to be 

tightly packed, where all four clusters are located in the southeast area and are adjacent to each 

other forming a big large CMA similar to the base case solution with one cluster.

As the maximum inter-cluster distance is reduced, the set of suitable and available sites

decreases, forcing the model to choose a larger number of less suitable sites at the cost of 

compactness. In Figures 5.a and 5.b a total of 11 sites are selected in each case, whereas in 

Figure 5.c, 13 sites are selected, which increases further to 14 sites in Figure 5.d. 
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Figure 6 displays the results of the Meta-clustering Model II where clustering is achieved by 

penalizing the dispersion of CMAs in the objective function. Again, to highlight the model’s 

performance we present only the results for four CMAs and four meta-clustering weights (σ), 

specifically σ = 0.00, 0.06, 0.09 and 0.10. The results for σ =0 are presented in Figure 6.a. As 

could be expected, the results are identical to the base case results for four CMAs. The results for 

σ =0.06 are presented in Figure 6.b. The selected clusters are located closer together and the 

maximum inter-cluster distance is reduced compared to the configuration in Figure 6.a. 

Increasing the weight to 0.09 (Figure 6.c) puts three of the four CMAs together in the southeast, 

with only one CMA being located farther away. This last CMA is needed because forming a 

sufficiently small and compact CMA from the unselected sites in the southeast (to decrease the 

total inter-CMA distance) was not possible while providing a sufficient carrying capacity to 

include all the GT’s that are accommodated by the CMA in the southwest. As the weight is 

increased to 0.1, the inter-site distances have a bigger impact on the objective function; therefore 

as can be seen in Figure 6.d, the model selects four clusters that are adjacent to each other. As 

expected this results is similar to the one cluster base case and identical to the constraint meta-

clustering model with a short inter-cluster distance (see Figure 5.d). Compared to the selection in 

Figure 6.c, the model now selects two additional sites (12 sites in 6.c versus 14 sites in 6.d). 

Although this increases the total inter-site distance value (the first summation in the objective 

function), the higher weight used for meta-clustering counterbalances that adverse effect. The

model results with the two meta-clustering formulations are quite sensitive to the specification of 

the objective function weight σ and constraint parameter d , therefore it would be ideal to use the 

proposed methods in close collaboration with the land managers. 
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5. Concluding Remarks

This paper presents several linear integer programming formulations that can be used to 

incorporate relocation distances and meta-clustering as spatial criteria in designing conservation 

management areas (CMA)s. We apply the models to a real data set pertaining to a military 

installation where protection of Gopher Tortoise, a key stone species at risk, is of concern. 

Though the models are complex and the empirical applications demonstrate that they are 

computationally convenient (can be solved within a reasonable computation time, at least for the 

data set used here). The results of the models are consistent with intuition and reflected the 

desired outcomes; the meta-clustering model selects CMAs that are clustered (in close proximity 

to each other) and the individual CMAs are compact. It should be noted that adding the spatial 

requirements can require the model to select from among less suitable parcels when the best 

parcels did not meet the specified spatial criteria. This in general leads to the selection of larger 

CMAs, poorer compactness of some CMAs, or reduced meta clustering of multiple CMAs. 

Therefore, there is a trade-off between spatial considerations and economic efficiency in optimal 

selection of conservation CMAs.

The grid cells (sites) considered as decision units in this study are rather large (900mx900m). In 

many practical CMA design problems much smaller areas may have to be considered as decision 

units, depending on various factors such as data accuracy, site costs, and uniformity of each site 

in terms of habitat characteristics. This may increase the model size considerably and 

computational difficulties may arise. For conservation analyses that require higher resolution, it 

is possible to conduct a multi-step modeling approach, where low resolution data is used to 

locate the general area and successively higher resolution data is used for the surrounding area in 
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successive model runs. In each successive run the model may be restricted to the area selected in 

the previous run and the large grid units in that selection can be divided into sufficiently small 

spatial decision units to identify the specific conservation areas at desired resolution. 

According to the relocation model results, it is possible to form up to four centrally placed 

CMAs within the new military areas that are in close proximity to the original GT habitat areas. 

The CMAs become smaller and more compact, and comprise higher quality sites as the allowed 

number of CMAs is increased. However, they may be dispersed throughout the installation area. 

When a clustering objective (meta-spatial consideration) is imposed on site selection, a few more

CMA sites were selected and the CMAs were located in areas containing less suitable sites.  

These results provide general guidelines and will be useful for on the ground decision makers. 

Perhaps the most important empirical finding of this study is that regardless of the spatial 

considerations imposed in each case, the GT habitat conservation objective can be served by 

designating a little amount of land, thus without significant sacrifice in the use of the military 

area for training purposes.

Finally, it should be noted that this paper is more than an empirical analysis of GT conservation 

in a military area. By successfully incorporating ecological and spatial consideration into linear 

site selection models, we illustrate that it is possible to generate optimally designed conservation

CMA configurations using integer programming. With appropriate modifications the methods 

introduced here are applicable to many other conservation problems involving endangered and 

at-risk species and can be extended to include multiple species and multiple land uses.  These

methods can also be applicable to many other problems of land use/allocation, such as optimal 



24

selection of nature CMAs, districting, or optimal urban expansion. For instance, determining 

optimal locations of open spaces (nature reserves) in and around urban areas has much similarity 

to the relocation problem addressed here.11 Therefore, we view the methodological aspects of the 

paper as equally valuable as its empirical findings for the particular problems we dealt with.

                                                
11 The importance of movement distances may be seen as overemphasized in the GT relocation problem (as 
relocation is to occur only once, thus the cost involved would be little), but the distances between ‘origins’ (urban 
areas) and ‘destinations’ (open spaces) may be of serious concern in the nature reserve design problem where it is 
desirable to locate nature reserves as close as possible to urban areas (to serve as open spaces). The excessive cost of 
numerous repeated trips by numerous people between the urban areas and open spaces over a long time horizon
would be substantial even if the total distance is slightly suboptimal.
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8. Figure Captions

Figure 1: Land use and GT habitat suitability in Ft. Benning.  a) Locations with current intensive 

military use; b) Proposed areas for additional intensive military use; c) Location of highways and 

major paved roads

Figure 2: a) Location of observed GT habitats (based on burrow counts); b) Location of suitable 

GT habitat areas, c) Quality of suitable habitat areas (darker shade indicates higher quality)

Figure 3: Relocation Model I; solutions for compact reserve configurations with (a) one reserve; 

(b) two reserves; (c) three reserves; (d) four reserves. The lighter shaded areas indicate the 

current (blue) and proposed (red) military training areas, while the darker shaded areas (shown 

with the parcels included) indicate the conservation sites chosen by the model. Black circles are 

used to identify the selected reserves.

Figure 4: Relocation Model II; solutions for compact reserve configurations that minimizes 

movement distances with (a) one reserve; (b) two reserves; (c) three reserves; (d) four reserves. 

The lighter shaded areas indicate the current (blue) and proposed (red) military training areas, 

while the darker shaded areas (shown with the parcels included) indicate the conservation sites 

chosen by the model. Black circles are used to identify the selected reserves.

Figure 5: Meta-Clustering Model I; solutions for compact reserve configurations with constraint 

meta-clustering for four reserves with a maximum inter-site distance of (a) 30 cells (27 km); (b) 

25 cells (22.5 km); (c) 20 cells (18 km); (d) 15 cells (13.5 km). The lighter shaded areas indicate 
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the current (blue) and proposed (red) military training areas, while the darker shaded areas 

(shown with the parcels included) indicate the conservation sites chosen by the model. Black 

circles are used to identify the selected reserves.

Figure 6: Meta-Clustering Model II; solutions for compact reserve configurations with constraint 

meta-clustering for four reserves with a meta-clustering weight of (a) 0.00; (b) 0.06; (c) 

0.09; (d) 0.10. The lighter shaded areas indicate the current (blue) and proposed (red) 

military training areas, while the darker shaded areas (shown with the parcels included) 

indicate the conservation sites chosen by the model. Black circles are used to identify the 

selected reserves.
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9. Figures (we will provide both color and gray scale images at the desired resolution for print and online publication)1
2

3
(a) (b)4

Fig 1 – Locations of current and future intensive military use5
6

7
(a) (b) (c)8

Fig 2 - Location of observed GT habitats9
10
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(a) (b)

(c) (d)
Fig. 3 – Relocation Model I Results
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(a) (b)

(c) (d)
Fig. 4 – Relocation Model II Results
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(a) (b)

-(c) (d)
Fig. 5 – Meta-clustering Model I Results
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(a) (b)

-(c) (d)
Fig. 6 – Meta-clustering Model II Results


