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Abstract: This paper explores the effects of integrating biodiversity indices that

account for species richness and evenness into an economic optimal control model.

Biodiversity is often adversely affected by human economic activities. This reduces

social welfare but may be external to private economic decisions. Consequently,

these external effects on biodiversity need to be considered explicitly in economic

models, which is only partly reflected in the literature. Biodiversity is either treated

only implicitly in models of multiple renewable resources, or it is considered in terms

of (genetic) variability or species richness only, but not in terms of biodiversity in-

dices that account for both species richness and evenness. However, both constitute

important dimensions of biodiversity. This paper integrates non-use values derived

from the existence of multiple renewable or living resources, expressed by such a

biodiversity index, into a social welfare function. An optimal control model with

an economic activity and two living resources is set up and conditions for optimal

management are derived. Main findings are that a unique equilibrium that satisfies

sufficient optimality conditions can be determined even though the biodiversity in-

dex is non-concave. Compared to a model set up with a monotonically increasing,

concave value function, steady state stocks are distributed more evenly and biodiver-

sity is higher when the biodiversity index is applied. However, the total number of

individuals in steady state is higher when a monotonically increasing, concave value

function is applied.
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1 Introduction

Human activities and economic development are a continuous threat to biological

diversity or biodiversity, which has given rise to calls for biodiversity conservation.

Heal (2004) makes unequivocally clear that biodiversity creates and contributes to

economic values. He distinguishes four categories to which biodiversity positively

contributes: ecosystem productivity, insurance, genetic knowledge, and ecosystem

services. Consequently, biodiversity does increase social welfare though it might be

external to individual considerations of profit maximization. This has to be taken

into account in economic models when determining efficient management strategies

for the use of renewable and non-renewable resources. Not accounting for the adverse

effects of economic activities on biodiversity implicitly means attaching a value of

zero to it, which is not appropriate as highlighted by Heal (2004).

When attempting to introduce the notion of biodiversity into an economic model,

biodiversity needs to be defined first. According to the United Nations Convention

on Biological Diversity (CBD, 1992) it is ”...the variability among living organisms

from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems

and the ecological complexes of which they are part [which] includes diversity within

species, between species and of ecosystems.” This definition illustrates that biodiver-

sity concepts can be applied to different organizational levels, i.e. the species-level

or the community-level, and to different spatial scales (see Armswoth et al. (2004)

for an overview of biodiversity concepts).

As this paper is concerned with the damage inflicted upon certain living species

by economic activities like the extraction of non-renewable resources or the con-

struction of roads in a confined area, it is reasonable to consider biodiversity on the

species-level.1 There are two general ways in which species-level biodiversity can be

determined (Purvis and Hector, 2000). One way takes into account certain features

of different species and calculates pairwise differences between the attributes of these

species (Weitzmann, 1992). This concept can for example be applied to phylogenetic

diversity, which would be larger the more the genetic features of the species differ.

The second way is to set up a biodiversity index that takes into account the total

1From now onwards the term biodiversity will be used to indicate species-level biodiversity
throughout the paper although this will not always be explicitly mentioned.
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number of species as well as the abundances of the different species. This paper

follows the second approach, which is also widely used by ecologists.

Species-level biodiversity in this second sense has several dimensions. One dimen-

sion is species richness, which means the number of species within a certain area.

This term was coined by McIntosh (1967) and it represents the oldest and most

common measure of biodiversity. The second dimension of species-level biodiversity

is species evenness, which means the variability in the distribution of species abun-

dances within a certain area. While the role of species richness for biodiversity is

intuitively clear, the role of evenness is subtler. From an ecological point of view,

more abundant species usually have a larger influence on the functioning of ecosys-

tems than rare species do. Consequently, considering an ecosystem with the same

number of species, diversity increases the more evenly the species abundances are dis-

tributed. On the contrary, diversity decreases the more the ecosystem is dominated

by few species (Duelli and Obrist, 2003; Armsworth et al., 2004).

Considering biodiversity only in terms of species richness implies that biodiversity

loss only occurs when a species becomes extinct (Baumgaertner, 2006). This decline

in species richness tends to receive special attention because species extinction is

irreversible. Conserving species therefore means preserving a real option value in the

sense that the function of a certain species and its contribution to ecosystem services,

which might not be known today, will still be available in the future (Heal, 2004).

However, Chapin et al. (2000) point out that ”human activities influence the relative

abundances of species more frequently than the presence or absence of species”.

They emphasize that changes in species evenness respond more quickly to human

interference than changes in species richness do and that changes in species evenness

have important impacts on ecosystems and their functioning long before a species

is threatened by extinction (Chapin et al., 2000). So more generally, biodiversity

loss can also occur when relative species abundances are changed, which should be

accounted for and investigated also in economic models.

The two dimensions species richness and species evenness can be incorporated

into a single measure by calculating so-called diversity indices.2 There are a large

number of different diversity indices (see Magurran (2004) for an overview) and they

2Following Good (1953), these indices are also called heterogeneity measures. However, through-
out this paper they will be referred to as diversity or biodiversity indices.
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are widely used in ecology to measure species-level biodiversity. However, the ex-

plicit integration of biodiversity into economic models still is scarce and according

to a meta study by Eppink and van den Berg (2007), diversity indices that also ac-

count for species evenness have not been incorporated into economic models at all.

If biodiversity is considered in economic models, it is either treated only implicitly

in multi-species renewable resource models (e.g. Clark, 1976 or Swanson, 1994), or

it is considered in terms of species richness (Li et al., 2001) or (genetic) variabil-

ity (Brock and Xepapadeas, 2003). This paper integrates a biodiversity index that

simultaneously accounts for species richness and species evenness into an optimal

control model. The inclusion of such a biodiversity index allows to answer the ques-

tion how economic activities like the optimal extraction of non-renewable resources

or the construction of roads have to be adjusted if they have adverse effects on living

resources and alter relative species abundances. Moreover, the index used provides

a direct measure for biodiversity and no evaluation technique has to be used to infer

the utility derived from biodiversity from empirical surveys.

2 Literature review

This paper introduces biodiversity indices into a multi-species optimal control model,

where the living resources are damaged by some human-induced economic activity.

The approach is similar to traditional harvesting models, where e.g. fish resources

are harvested due to the possibility to generate profits, which have to be traded

off against harvesting costs. Living resources, such as fish or other animals, usu-

ally do not grow linearly but e.g. according to a logistic growth function and face

natural carrying capacities. The literature on renewable resources considers these

biological constraints and investigates e.g. optimal harvesting programs or efficient

management techniques.

Seminal papers on renewable resources include Gordon (1954), who highlights

that the common property character of fish resources can lead to socially inefficient

harvest. Clark and Munro (1975) use an optimal control approach to determine

optimality conditions for harvest and resource stocks, and observe that non-linearities

in the system can give rise to multiple equilibria. Clark (1979) determines optimal

harvesting of a common property resource and compares it to the case of privately
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owned fisheries. The standard one-species models of optimal fisheries have been

extended to multiple-species models, where the species interact in different ways (see

e.g. Clark, 1976). These interactions can be competing (Flaaten, 1991), mutualistic

(Wacker, 1999) or predator-prey relationships (Hannesson, 1983).

The second strand of research important to this paper is that of biodiversity in

economic models. Eppink and van den Bergh (2007) provide an extensive review

of how biodiversity has been integrated into economic models, including those con-

sidering the optimal extraction of renewable resources. In these models, a value

is typically attached to renewable resources due the possibility of harvesting them.

Non-use values have also been captured in these models, e.g. as opportunity costs of

land conservation where agricultural production yields positive returns but impacts

negatively on the species abundances (Skonhoft, 1999 or Bulte and Horan, 2003). In

addition, biodiversity can be a determinant for the resilience of an ecosystem against

exogenous events. Perrings and Walker (1997) investigate the optimal management

of ecosystems, where biodiversity and resilience are influenced by human interfer-

ence. Biodiversity is thus often implicitly accounted for but only few papers include

explicit indices to reflect direct or indirect values of biodiversity.

One way to consider biodiversity explicitly is to follow Weitzman (1992), who de-

fines biodiversity in terms of pairwise differences between several features of different

species. Brock and Xepapadeas (2003) build on this and establish an endogenous

measure for biodiversity that accounts for the economic value derived from an ecosys-

tem with genetic diversity. Moreover, Brock and Xepapadeas (2002) set up a model

where two species compete for one resource and derive optimal management rules

when the economic value derived from ecosystem functions is considered. Another

way to consider biodiversity explicitly is to integrate biodiversity indices in terms of

species richness into optimal control models. Li and Loefgren (1998) as well as Li

et al. (2001) include information on species richness into their models to determine

optimal paths for the number of species as well as for single resource stocks. In

addition, Eichner and Tschirrhart (2007) use a biodiversity measure that is based on

species abundances and constructed such that divergences from the natural level of

biodiversity negatively impact on utility. They integrate this measure into a CGE

modeling framework. Moreover, Eppink and Withagen (2009) integrate spatial pat-

terns of biodiversity conservation into a multiregional general equilibrium model by
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considering a species-area curve, where the number of species is a concave function

of habitat size.

This literature review shows that there exist few papers that directly integrate

biodiversity into economic considerations. This paper contributes to the literature by

integrating a biodiversity index that accounts for both species richness and evenness

into a multi-species optimal control model. The construction of the biodiversity

index implies that the marginal value derived from an increase in the stock of one

species may be positive or negative, depending on relative stock sizes. Qualitatively,

this is similar to considering living renewable resources that may create both benefits

and damages. One example for such a framework in a one-species model is presented

by Rondeau (2001), who examines a model where the reintroduction of a harvested

species may cause benefits and damages, while harvest itself creates benefits. Another

example is presented by Horan and Bulte (2004), who consider living resources that

may either create an economic benefit via tourism revenues or that induce a stock-

dependent damage via agricultural damage or human mortality. Both frameworks

allow for shadow prices that may either be positive or negative even in a one-species

framework, which can give rise to non-convexities in the Hamiltonian as is also the

case in Tahvonen and Salo (1996).

The model introduced in section 4 of this paper illustrates how a biodiversity

index that may induce non-concavity of the current-value Hamiltonian influences

the equilibrium values in an optimal control model with two living resources. It also

shows how the characteristics of this equilibrium change compared to the case where

the value derived from the living resources is monotonically increasing and concave

in stock sizes and independent of relative stocks.

3 Biodiversity indices

Before presenting in more detail the group of biodiversity indices that are integrated

into an optimal control model in section 4 of this paper, it has to be noted that em-

ploying these indices requires three basic assumptions. First, all species are assumed

to be equal. Species with different conservation values or with different contributions

to ecosystem functions are not discriminated but treated equally. Only the relative

abundance of a species indicates its ecological importance. Second, all individuals
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of the same species are assumed to be equal. The third assumption concerns the

practical measurement of species abundances and assumes that they are recorded

using appropriate and comparable units (Magurran, 2004).

The group of diversity indices used to represent biodiversity in this paper is based

on an entropy measure that had originally been used in information theory (Renyi,

1961; Hill, 1973). This measure is constructed using the (relative) abundances of

the species and thus (usually) accounts for species richness and species evenness.

See Baumgaertner (2006) for a detailed discussion, which is briefly sketched in the

following. The general biodiversity index is constructed as follows:3

Vω(x1, ..., xn) = (
n∑
i=1

ri
ω)

1
1−ω with ω ≥ 0 (1)

and

ri =
xi∑n
i=1 xi

for i = 1, ..., n (2)

The number of species under consideration is n. The relative abundance of each

species i = 1, ..., n is given by ri. This relative abundance is composed of the absolute

abundance, xi, of each species i relative to the sum of the absolute abundances of

all species. As outlined in the introduction, the relative abundances of the species

are important for their role within an ecosystem. All else being equal, the index

value increases with increasing species richness but also with increasing evenness

in the distribution of the relative abundances. The importance attached to species

richness and evenness is determined by setting ω. For different values of ω, different

biodiversity indices emerge (Baumgaertner, 2006).

There are two extreme cases. For ω = 0, only species richness will be measured,

but not evenness. Consequently, the resulting measure is just called Species Richness

(R) (following McIntosh, 1967). The biodiversity index V0(x) always assumes the

value n, reflecting the total number of species. A biodiversity loss only occurs if a

species becomes extinct. For ω → ∞, only species evenness will be measured, but

not richness. This measure is called Berger-Parker-Index (BP) (Berger and Parker,

1970). The biodiversity index V∞(x) is given by {max rit}−1. It thus only accounts

3In the following, the variables (x1, ..., xn) will be collected in the vector (x).
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for the species that is relatively most abundant. Biodiversity is given by the inverse

of the relative abundance of this species.

All cases in between take into account both species richness and evenness but vary

with respect to the degree of importance attached to either. There are two more cases

with special names: The Shannon-Wiener-Index (SW) for ω = 1 (Shannon, 1948;

Wiener, 1948) and the Simpson-Index (S) for ω = 2 (Simpson, 1949). The Shannon-

Wiener-Index is based on the famous Shannon-Wiener entropy (H) used in statistics

and information theory. It is computed as follows (for a formal proof see Hill, 1973):

V1(x) = exp(H) = exp(−
n∑
i=1

ri ln ri) (3)

The Simpson-Index is popular among ecologists because it has a meaningful ecolog-

ical interpretation. It is computed as follows:

V2(x) = (
n∑
i=1

r2
i )
−1 (4)

The sum of the squared relative abundances present in the Simpson-Index reflects

the probability that any two individuals drawn randomly from an infinitely large

ecosystem belong to different species. Biodiversity is represented by the inverse of

this expression, so that V2(x) increases with increasing evenness in the distribution

of relative species abundances (Baumgaertner, 2006).

The parameter ω that varies with the different indices can also be interpreted

as the inverse of the elasticity of substitution between the relative abundances of

the different species. The higher ω, the lower the elasticity of substitution between

these relative abundances. So, for ω equal to one, this elasticity is one, for ω greater

than one, substitution is relatively inelastic and for ω smaller than one, substitution

is relatively elastic. Consequently, the higher ω the higher the value attached to

evenness between the species. Neglecting evenness puts a relatively large weight on

rare species (Baumgaertner, 2006). However, the qualitative characteristics of these

indices are similar as long as 0 < ω <∞.

For a given number of species, i.e. for a given value of n, the values of all indices

are larger than 1 and smaller or equal to n, depending on the relative abundances
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ri. The relation between the different indices always is as follows:

n = V R
0 ≥ V SW

1 ≥ V S
2 ≥ V BP

∞ > 1 (5)

The maximum value n is reached for ω > 0 only if all species in an ecosystem

have equal relative abundances, i.e. if ri = 1
n

for all i. For a given n and for ω > 0,

the value of Vω(x) decreases with increasing unevenness in the distribution of relative

abundances between the species. This is a very important and interesting feature of

these biodiversity indices, which will be further discussed below and in subsection

4.2. The diversity indices are constructed such that for a given number of species n,

they reach their maximum value only if all species have equal relative abundances.

For example, for an ecosystem with two species, the biodiversity index takes on the

maximum value 2 only if both species account for 50% of all individuals. But it does

not matter how large their absolute abundance is. This also implies that increasing

the absolute abundance of one species may lead to an increase in diversity or to a

decrease of diversity, depending on whether this species had been underrepresented

or overrepresented in the sample prior to the change.

In terms of economic thinking, this may seem counterintuitive. Usually, one

assumes jointly concave utility functions where an increase in the availability of each

good, for example, has a positive marginal utility. However, one can also think of

backward-bending indifference curves where e.g. an increase in income has a negative

marginal utility given that a high level of working hours has been reached. Using

a diversity index in an economic model implies emphasizing the role of evenness in

the distribution between two goods. More importantly, the utilization of diversity

indices is widely used in ecology because the distribution of abundances matters for

the functioning of ecosystems. Consequently, it seems worthwhile to explore the role

of diversity indices also in economic models where external effects on relative species

abundances and biodiversity occur.
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4 Biodiversity in an optimal control model

4.1 General modeling framework

In this subsection, the general biodiversity index as described in section 3 is incor-

porated into an optimal control model. The model is set up as follows:

max W =

∫ ∞
0

e−ρt[U(y1t, ..., ynt) + V (x1t, ..., xnt)]dt (6)

s.t.

ẋit = Gi(x1t, ..., xnt)− φiyit and xi0 = Xi for i = 1, ..., n (7)

and

Gi(x1t, ..., xnt) = ψixit(1−
∑n

j=1 xjt

κ
) with 0 <

n∑
j=1

xjt ≤ κ ∀ i, t (8)

In this model, the instantaneous utility function U(y1t, ...ynt) = U(yt) expresses

the net benefit generated by some economic activity, e.g the extraction of non-

renewable resources, construction activities or agricultural activities, at time t. The

vector yt = (y1t, ..., ynt) describes the level or intensity of this economic activity but

it is not further specified. Especially, there is no explicit modeling of the costs related

to this activity. This simple modeling approach has been chosen to be able to clearly

identify the effects of the second factor contributing to social welfare, the biodiversity

index, on the model solutions. The instantaneous utility function is separable in the

components of yt and satisfies the following properties: ∂U(yt)
∂yit

= Uyit
> 0 ∀ i, t;

Uyityit
< 0 ∀ i, t and Uyityjt

= 0 ∀ i 6= j, t. The vector xt = (x1t, ..., xnt) contains

the stocks of the n renewable or living resources at time t. The value derived from

their existence is expressed by the biodiversity index V (x1t, ..., xnt) = V (xt). The

properties of this biodiversity index are crucial for the solutions of the model and

discussed below in more detail.

The case that n may change is not considered here, which implies that no species

becomes extinct and that the number of species cannot be increased. This is rea-

sonable because the economic activity takes place in an environment with a given

ecosystem and thus with a given number of species. It is assumed that a social

planner intends to maximize social welfare by integrating the discounted utility and
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value functions over time. In this partial equilibrium model, U(yt) and V (xt) are

both given in money metrics and therefore enter the social welfare function separably.

Conditions (7) and (8) together define the equations of motion for the stocks

of the living resources xi. Note that the growth of each living resource does not

only depend on its own stock size but also on the stock sizes of all other living

resources. In this specification, all living resources compete for the same external

resource, which may be food supply.4 In the absence of the other living resources,

the biomass stock of one living resource xi would grow according to a logistic growth

law. The growth function Gi(x) defined in (7) would then take on the form of a

concave quadratic function dependent only on xi with Gi(0) = 0 and Gi(κ) = 0 ∀ i.

The maximum growth rate would be reached when the stock is equal to κ
2
. The

parameter ψi represents the intrinsic growth rate of the stock xi, and κ represents

the carrying capacity of the stock.

In addition, it is assumed that the economic activity expressed by y reduces the

stock of the living resource according to the damage coefficient φi. Note that there is

one separate control variable yi for each living resource stock xi. This implies that the

damage caused by the economic activity can be controlled separately for each living

resource, which is similar to fishery models with selective harvesting (see e.g. Clark,

1976). Assuming that the damage would be non-selective would impose rigidities on

the model that would induce the possibility of negative shadow prices and thus the

existence of multiple equilibrium candidates. The more flexible approach has been

chosen here to allow a better analysis of the behavior of the biodiversity index in the

model. Moreover, it seems by no means impossible that economic activities like the

construction of roads can be executed such that the damage inflicted upon different

living species can be controlled separately.

Note moreover, that this is only one way in which the negative impact of economic

activities on living resources could be modeled. Another possibility would be that

these activities damage the habitat of the living resources, such that the carrying

capacity κ would be reduced. However, here the impact takes place in the form of a

flow externality, reducing the biomass stock of the renewable resource whenever the

economic activity is carried out.

4The specification is a modified version of the Gause model (Gause, 1935) as described by Clark
(1976). Especially, it is assumed here that κi = κ ∀ i for simplicity.
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The current-value Hamiltonian now reads as follows:5

Hc = U(y) + V (x) +
n∑
i=1

λi(Gi(x)− φiyi) (9)

The necessary first order conditions are given by expressions (10) to (11).

∂Hc

∂yi
= 0 ⇒ Uyi

= φiλi ∀ i (10)

−∂H
c

∂xi
= λ̇i − ρλi ⇒ ρ = Gixi

+
∑
j 6=i

λj
λi
Gjxi

+
λ̇i
λi

+
Vxi

λi
∀ i (11)

The conditions given by (10) represent the static optimality conditions for the

optimal level of the economic activity at each point in time. The marginal utility

of this activity has to be equal to its marginal costs. As the costs are not explicitly

considered here, the right-hand-sides of the equations only include the damage on the

living resources caused by the economic activity, evaluated with the corresponding

shadow price, λi, of the living resource xi. With each unit of the economic activity

carried out, a certain share of the stocks of the living resources is destroyed. This

implies opportunity costs because this share of the living resources will not be present

in the future to contribute to reproduction, thus diminishing the own rate of interest

of the living resources. As by assumption Uyi
> 0 and φi > 0, the optimality

conditions in (10) imply that λi > 0 ∀ i.
The conditions given by (11) describe the optimal allocation of each stock of the

living resources over time. Expressed in capital theoretic terms, the social discount

rate ρ has to be equal to the own rate of interest of each living resource stock. This

own interest rate consists of the growth rate of the resource stock xi (Gixi
), the

impact of the resource stock on the growth rate of all other living resource stocks

evaluated with the corresponding shadow prices(
∑

j 6=i
λj

λi
Gjxi

), the increase in its own

shadow price ( λ̇i

λi
) and the increase in the existence value derived from this stock, i.e.

the increase in the biodiversity index divided by the shadow price (
Vxi

λi
).

5Time subscripts are dropped for convenience where this does not lead to confusion. The vari-
ables (x1, ..., xn) and (y1, ..., yn) are collected in the vectors (x) and (y) respectively.
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4.2 Properties of the biodiversity indices

Subsection 4.1 presented a general version of the model for n species and incorporated

a general version of the biodiversity index, V (x), in the optimization framework. In

this subsection, the properties of the biodiversity indices, especially their reaction

to changes in the stock size of a living resource, and the resulting impacts on the

optimal control model are traced analytically in more detail for different values of ω.

Species Richness. Suppose that ω = 0. This implies that biodiversity will only

be measured by means of the total number of species n and V0(x) = n. So, as long

as n stays constant, i.e. as long as no species is driven to extinction by the damage

caused by the economic activity, ∂V0(x)
∂xi

= 0 for i = 1, ..., n, and the conditions in (11)

reduce to:

ρ = Gixi
+
∑
j 6=i

λj
λi
Gjxi

+
λ̇i
λi
∀ i (12)

At first sight, this suggests, that the stocks of the living resources are not impor-

tant for the optimal path of the economic activity over time. However, the opportu-

nity costs of destroying shares of the stocks of the living resources are still present in

equations (10), implying that the damage inflicted upon the living resources does still

matter for the optimal path of the economic activity y. This is because decreasing

the stock of the living resources still induces reduced opportunities for future stock

growth.

Berger-Parker-Index. Suppose that ω =∞ and denote the relatively most abun-

dant living resource stock by xm, so that V∞(x) = r−1
m =

∑n
i=1 xi

xm
. From this it follows

that:
∂V∞(x)

∂xm
=
xm −

∑n
i=1 xi

x2
m

=
−
∑

i 6=m xi

x2
m

< 0 (13)

Note that this partial derivative is negative as long as there exist more species

than just the species m with a positive number of individuals each. This implies

that an increase in the stock of the most abundant species necessarily leads to a

reduction of biodiversity and thus to a decrease in utility derived from this stock

increase. The reason for this is obvious: Increasing the stock size of the species

that is already dominant in the sample increases the unevenness and thus decreases
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diversity. On the other hand, an increase in the abundance of any non-dominant

species xi with i 6= m will necessarily increase biodiversity:

∂V∞(x)

∂xi
=

1

xm
> 0 ∀ i 6= m (14)

Simpson-Index. As it is the aim of the paper to consider both species richness

and evenness and not only one of them, it will be assumed from now on that V (x) is

given by the Simpson-Index with ω = 2. This is sensible because the Simpson-Index

has a meaningful ecological interpretation. In addition, the Simpson-Index is ”one

of the most meaningful and robust diversity measures available” (Magurran, 2004).

It should be noted here that the Simpson-Index puts a relatively large emphasis

on evenness compared to richness. However, this is appropriate here because the

model considers an environment with a fixed number of species. Moreover, the

Simpson-Index is representative for all cases in which 0 < ω < ∞. The derivatives

presented below have also been derived for the general case, and qualitative features,

especially the results derived from equation (17), also hold in general. Consequently,

the assumption ω = 2 does not entail any loss of generality. Note also that for the

sake of concreteness, the number of species will from now on be reduced to n = 2.

It follows that:

V2(x1, x2) = V2(x) = (r2
1 + r2

2)−1 (15)

with

ri =
xi

x1 + x2

for i = 1, 2 (16)

Partially differentiating V2(x) with respect to x1 yields the following derivative.

The partial derivative Vx2 can be constructed analogously.

Vx1 = −2 ∗ V2(x)2 ∗ (x1 + x2)−3 ∗ [x2(x1 − x2)]


< 0, x1 > x2;

= 0, x1 = x2;

> 0, x1 < x2.

(17)

It is obvious that the effect of an increase in the abundance of one species does

not necessarily lead to an increase in the value of the biodiversity index. If x1 is

underrepresented in the sample, i.e. x1 < x2, an increase in its stock size will lead

to higher biodiversity. But if it is overrepresented in the sample, i.e. x1 > x2, an
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increase in its stock size will lead to lower biodiversity. This is the main difference

to other renewable resource models where the marginal utility of the stock usually

is positive for all stock sizes.6

If all species are equally abundant, i.e. xi = x′ ∀ i, the derivative of V2(x) with

respect to each xi is zero. That is, diversity has reached its maximum value, n, and

will not further increase with an increase in the relative abundance of any species

because all species are equally abundant. (Sufficient conditions for a maximum are

checked below.) However, biodiversity will decline whenever the size of any stock

diverges from x′ because evenness is no longer fully satisfied. This holds for all ω.

Constructing the general Hessian matrix composed of the second partial deriva-

tives of V2(x), one receives the following:

He(V2(x)) =

(
Vx1x1 Vx1x2

Vx2x1 Vx2x1

)
=

 4x1x2(x2
1−3x2

2)

(x2
1+x2

2)3
−2(x4

1−6x2
1x

2
2+x4

2)

(x2
1+x2

2)3

−2(x4
1−6x2

1x
2
2+x4

2)

(x2
1+x2

2)3
4x1x2(−3x2

1+x2
2)

(x2
1+x2

2)3

 (18)

The eigenvalues and the determinant of this Hessian are as follows:

EV1(He) =
2(x1 − x2)2

(x2
1 + x2

2)2
≥ 0 (19)

EV2(He) =
−2(x1 + x2)2

(x2
1 + x2

2)2
≤ 0 (20)

Det(He) =
−4(x2

1 − x2
2)2

(x2
1 + x2

2)4
≤ 0 (21)

This allows to draw important conclusions for the curvature of the biodiversity

index V2(x). Two cases can be distinguished:

Case 1: x1 = x2. In this case, the first partial derivatives of the biodiversity index,

Vx1 and Vx2 , are zero and V2(x) assumes the critical value n = 2. Moreover, it now

holds that the first eigenvalue EV1(He) is zero while the second one is negative. In

addition, the determinant of He is zero. From this it follows that He is negatively

semi-definite and thus V2(x) is locally concave for x1 = x2. Consequently, the critical

6Two exceptions are Rondeau (2001) and Horan and Bulte (2004), who account for the possibility
of negative marginal utility in a one-species framework.
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value n = 2 is proven to be a maximum.

Case 2: x1 6= x2. In this case, the eigenvalues ofHe necessarily are of different signs

and the determinant of He is negative, so that He is indefinite and no conclusions

can be drawn for the curvature properties of V2(x).

As the Simpson-Index is locally concave in xi only for x1 = x2 and not for all com-

binations of x1 and x2, also the Hamiltonian will not necessarily be jointly concave

in the control and state variables on the whole domain. This will make a special

analysis of the equilibrium candidates necessary. A concave Hamiltonian (together

with the condition of non-negative shadow prices) would ensure that there exists

a unique equilibrium which would necessarily be a maximum and thus part of an

optimal solution. However, the non-concavity of the Hamiltonian requires a more

subtle analysis here.

4.3 Analytical features of the model

Rearranging equations (10), one receives the value of yi as the following function:

yi = U−1
yi

(φiλi) = Yi(λi) ∀ i = 1, 2 (22)

Note that equation (10) requires that the shadow prices λi have to be positive in

an optimal solution for all i. Inserting yi = Yi(λi) into the growth functions given

by (8) and rearranging the terms of the conditions in (11), the equations of motion

for the two state variables x1 and x2 and the two co-state variables λ1 and λ2 can

be derived:

ẋi = Gi(x)− φiYi(λi) = ψixi(1−
∑n

j=1 xj

κ
)− φiU−1

yi
(φiλi) ∀ i (23)

λ̇i = λi(ρ−Gixi
)− Vxi

−
∑
j 6=i

λjGjxi
∀ i (24)

Conditions (23) and (24) describe the optimal dynamics of the system in state-

costate space. To complete the necessary conditions for optimal solutions, the fol-

lowing transversality conditions are needed in addition to the initial conditions given
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in (7).

lim
t→∞

λitxite
−ρt ≥ 0 ∀ i (25)

Setting λ̇1 = λ̇2 = ẋ1 = ẋ2 = 0, the general steady state conditions of the system

read as follows:

x̄i =
φiYi(λ̄i)

ψi(1−
∑n

j=1 x̄j

κ
)
∀ i (26)

λ̄i =
Vx̄i

+
∑

j 6=i λ̄jGjx̄i

ρ−Gix̄i

∀ i (27)

To be able to solve these conditions analytically, it is assumed that the instan-

taneous utility function U(y) takes on the form of the isoelastic function U(y) =

ln(y1) + ln(y2). It follows that Yi(λi) = U−1
yi

(φiλi) = 1
φiλi

for i = 1, 2. The steady

state conditions then are given by:

x̄1 =
φ1Y1(λ̄1)

ψ1(1− x̄1+x̄2

κ
)

=
λ̄1

ψ1(1− x̄1+x̄2

κ
)
⇔ λ̄1 =

1

G1(x)
(28)

x̄2 =
φ2Y2(λ̄2)

ψ2(1− x̄1+x̄2

κ
)

=
λ̄2

ψ2(1− x̄1+x̄2

κ
)
⇔ λ̄2 =

1

G2(x)
(29)

λ̄1 =
Vx̄1 + λ̄2G2x̄2

ρ−G1x̄1

(30)

λ̄2 =
Vx̄2 + λ̄1G1x̄1

ρ−G2x̄2

(31)

Considering the system (28− 31), one can plug λ̄2 from equation (29) into equa-

tions (30) and (31) and solve the remaining three equations for λ1, each then de-

pending only on x1 and x2. These functions can then be plotted as surfaces in a

3D diagram. The intersection of all three surfaces constitutes the equilibrium of the

system. The three resulting steady state conditions read as follows:

F1 = λ1 =
1

G1(x)
(32)

F2 = λ1 =
Vx1 +

G2x1

G2(x)

ρ−G1x1

(33)
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F3 = λ1 =

ρ−G2x2

G2(x)
− Vx2

G1x2

(34)

These equations represent isoclines in three dimensions. Note that an increase

in λ2 would shift the two isoclines (33) and (34) down, when depicting the isoclines

in a 3D diagram with x1 and x2 at the base and λ1 on the vertical axis. Equation

(32) gives the combinations of x1 and x2 for which ẋ1 = 0. Equation (33) gives the

combinations for which ẋ2 = 0 and λ̇1 = 0. Equation (34) gives the combinations

for which ẋ2 = 0 and λ̇2 = 0. The equilibria of the system occur where all three

surfaces intersect. As all three functions are non-linear, a graphical illustration of

all three surfaces in a 3D diagram can be quite confusing. However, it is possible to

depict the intersections of all three surfaces with one another in a contour plot in

x1-x2 space. Equilibria occur where all three contours intersect. Figure 1 provides

such a contour plot for the parameter values presented in Table 1 as an example.

4.4 Numerical example

In this subsection, a numerical example for a two-species renewable resource model

with a biodiversity index is presented. Parameter values used are presented in Table

1. Species 2 features a higher intrinsic growth rate than species 1 but the same

carrying capacity. Moreover, species 2 is damaged less by the same level of economic

activity than species 1.

Parameter values

ρ 0.01 κ 100

ψ1 0.04 ψ2 0.10

φ1 0.2 φ2 0.1

Table 1: Parameter values for the model with ω = 2 and n = 2.

Figure 1 depicts the intersections of the three isoclines in x1-x2 space. The red

lines depict the intersections of the surfaces described by equations (33) and (34).

The green and the blue lines depict the intersections of the surface described by

equation (32) with the ones described by (33) and (34) respectively. The illustra-

tion shows that for these parameter constellations, there exists only one real-valued
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equilibrium. The corresponding steady state values are given in Table 2. The eigen-

values of the Jacobian of the dynamic system evaluated at the steady state values

have been computed. Two eigenvalues are positive while the other two are negative,

which reveals that the determinant of the Jacobian is negative and shows that the

steady state is a saddle.

x1

x2

Figure 1: Contour plot: Intersections of the three isoclines in x1-x2 space.

Steady state values

x̄1 19.6457

x̄2 21.6043

λ̄1 2.1660

λ̄2 0.7879

ȳ1 2.3084

ȳ2 12.6925

V̄2 1.9955

Table 2: Steady State values for the model with ω = 2 and n = 2.

Note that the steady state stock x̄2 is larger than x̄1, but that the two stocks are

very evenly distributed. This results in a high steady state value of the biodiversity
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index, V̄2. Note also that ȳ2 is much higher than ȳ1, which is due to the fact that

the damage coefficient φ2 and the steady state shadow price λ̄2 are smaller than φ1

and λ̄1 respectively. The shadow prices depend among other things on the marginal

value of the biodiversity index Vx̄i
. As x̄1 < x̄2, it directly follows that Vx̄1 > 0 while

Vx̄2 < 0, which influences the shaodw prices in the way that λ̄1 > λ̄2.

As the biodiversity index is not concave for all combinations of x1 and x2, it is

necessary to explicitly check the sufficient conditions for the steady state to be a

maximum. In order to do so, the Hessian matrix of the current-value Hamiltonian

evaluated at the steady state values is analyzed in the following:

Hesse(Hc) |stst=


−0.1877 0 0 0

0 −0.0062 0 0

0 0 −0.0045 0.0006

0 0 0.0006 −0.0035

 (35)

The four eigenvalues of this Hessian are: (−0.1877,−0.0062,−0.0048,−0.0032).

The determinants of the leading principal minors are: Det1 = −0.1877, Det2 =

0.0012, Det3 = −5.25 × 10−6, and Det4 = 1.77 × 10−8. It can be observed that all

four eigenvalues of the Hessian are negative and that the signs of the leading principal

minors alternate, starting with a negative sign of Det1. Consequently, the current-

value Hamiltonian is concave at the steady state. Moreover, both shadow prices are

necessarily positive in steady state. Consequently, sufficient optimality conditions

are fulfilled, which proves that there is a unique optimal steady state that solves

the dynamic system. Also note that the off-diagonal elements of the Hessian are

very close to zero, while all diagonal elements of the Hessian are negative. Sufficient

optimality conditions will be fulfilled as long as this is the case and the off-diagonal

elements of the Hessian are sufficiently close to zero.

4.5 Comparison to a model with a strictly increasing, con-

cave value function

This subsection compares the results derived so far with those derived in a model

where increases in the stocks of the living resources always add positively to the

value derived from the existence of these resources. That is it compares the results
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derived so far to the case where Vxi
> 0 holds for both living resources at all times

and independently of the relative stock sizes and where V (x) is strictly concave in

x1 and x2. To exemplify this, consider the following value function:

Vnew(x1, x2) =
ln(x1) + ln(x2)

8
+

3

4
(36)

The first partial derivatives of V (x) with respect to both stock sizes now are

positive for all possible combinations of stock sizes. Moreover, the function is strictly

concave for all x1 and x2. This functional form of the value function has been chosen

to make it comparable to the biodiversity index. Its values are confined to the interval

[1, 2], which also holds for the biodiversity indices for n = 2.

The value function (36) has been substituted into the maximization problem (6-8)

instead of the biodiversity index in order to compare results. Solutions for the real-

valued equilibrium values are given in Table 3. The arrows indicate the change with

respect to the results derived in the model with the biodiversity index. The value

given in the last row of Table 3, V̄2, is the value the Simpson-Index would take on in

steady state. Note that this biodiversity index had not been considered in the welfare

maximization problem here, so V̄2 represents the ex-post biodiversity, observed after

the maximization with the new value function. Applying the new value function

implies that both parts of the welfare function, i.e. U(y) and Vnew(x), are now strictly

concave on the whole domain so that the current-value Hamiltonian is also jointly

concave in the control and state variables. Moreover, optimality conditions require

that both shadow prices are positive in equilibrium. The properties of the Hessian

matrix of the current-value Hamiltonian have also been checked. As expected, all

eigenvalues of the Hessian are negative. Consequently, the steady state fulfills the

usual sufficient optimality conditions.

Comparing the steady values of this example with that of subsection 4.4, one

can see that the steady state stock of the more abundant species, x̄2, increased

while that of the less abundant species, x̄1, decreased, i.e. the distribution of species

abundances has become more uneven. In both model settings, restrictions on the

shadow prices are such that both λ̄1 and λ̄2 have to be greater than zero in steady

state. In the second model setting, the shadow price of the more abundant species,

λ̄2, decreased and the corresponding control variable, ȳ2, increased. The increase in

21



Steady state values

x̄1 18.6029 ↓
x̄2 26.1029 ↑
λ̄1 2.4304 ↑
λ̄2 0.6928 ↓
ȳ1 2.0573 ↓
ȳ2 14.4334 ↑
V̄2 1.52317 ↓

Table 3: Steady State values for n=2 with a strictly increasing, concave value function

ȳ2 directly follows from the decrease in λ̄2 as ȳ2 = 1
φ2λ̄2

in steady state. The inverse

holds in analogy for the shadow price and the control variable corresponding to the

less abundant steady state stock, x̄1.

Most importantly, the solution in the second model setting does no longer depend

on relative stock sizes. This implies that the evenness of the distribution of relative

species abundances does no longer matter for the optimization. Instead, now the

absolute abundances of the living resources are important. The result is that the

value of the Simpson-Index calculated after the steady state of the new system had

been observed decreased considerably. While the Simpson-Index took on a value of

nearly 2 in the first example, it now declines to approximately 1.5. On the other hand,

it can be observed that the total number of individuals in steady state, i.e. x̄1 + x̄2,

increased from 41.2 to 44.7. This result confirms expectations in that the choice of

the value function influences the degree of evenness in the distribution of relative

species abundances in steady state. Choosing a strictly increasing, concave value

function induces steady states with lower evenness and thus with lower biodiversity

in a setting with a given number of species n.

5 Discussion and conclusion

The model presented in section 4 of this paper introduces a biodiversity index that

accounts for both species richness and evenness into an optimal control model. The

model includes two living resources which grow according to a logistic growth func-
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tion but which compete with one another for the same external resource that sustains

their growth. Moreover, both living resources are damaged by an economic activity

according to some damage parameter. The economic activity yields a net benefit

represented by a utility function that is strictly increasing and jointly concave in the

controls. Biodiversity is introduced into the model by using a value function that

reflects the value derived from the existence of the two living resources. In a first

setting, this value is represented by the Simpson-Index, a biodiversity index widely

accepted by ecologists. In a second setting, this value is represented by a monoton-

ically increasing, concave value function. To my knowledge, this is the first paper

that studies the effects of introducing a biodiversity index into an optimal control

model and comparing its application to that of a monotonically increasing, concave

value function.

When using the biodiversity index, the signs of the marginal values of the resource

stocks necessarily are of opposite signs as long as x1 6= x2. The marginal value of

the less abundant species then is positive while that of the more abundant species

is negative. Moreover, the biodiversity index is locally concave only for x1 = x2

but not on the whole domain. This could induce non-concavity of the current-

value Hamiltonian. However, this paper shows that it is possible to derive a unique

equilibrium that satisfies sufficient conditions for a welfare maximum in spite of

using a non-concave value function to express the value of the living resources. In

addition, the analysis presented indicates that the properties of the biodiversity index

crucially influence the equilibrium of the model. Once biodiversity is considered in

the optimization problem, the stock sizes are distributed more evenly in steady state.

This in turn implies, that using a monotonically increasing, concave value function

to express the value of the living resources induces an equilibrium with lower species

evenness and thus with lower biodiversity.

Several limitations apply to the simple model presented in this paper. First, the

economic activity that yields utility via the utility function U(y) is not modeled in

more detail. A natural extension of the model would be to consider benefits and costs

of this activity separately in more detail. One would then also be able to contrast

the decision of a private economic agent, say a company, that does not care for

biodiversity with the decision of a social planner that takes biodiversity into account.

Consequently, such a set up would allow to determine efficient policy measures, e.g.
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an optimal tax on the economic activity, in order to internalize external damages.

Second, one could argue that the flexible control approach presented in this pa-

per is not fully realistic because damages caused by economic activities and inflicted

upon living resources can not be controlled perfectly separately. However, a more

rigid control approach with only one control variable would complicate the analysis

and cause problems that would divert attention from the effects of introducing the

biodiversity index in the model. In a setting with two species, using a more rigid

control approach would allow for one shadow price to be negative as long is the other

one is positive and sufficiently large. This leads to the appearance of several steady

states, no matter if one uses the biodiversity index or the concave, monotonically

increasing value function in the maximization framework. Moreover, sufficient con-

ditions for maxima then are harder to check. Consequently, the more flexible control

approach has been chosen here to show in a simple but clear setting that the biodi-

versity index can be used as a value function to express the non-use values derived

from the existence of living resources in order to determine a unique and optimal

steady state of the system.

Third, the model in this paper does not include spatial aspects. Living resources

are not static but continuously change their location. In particular, they can wander

between sites affected by the economic activity and e.g. protection sites. Con-

sequently, possible extensions include the consideration of site selection and site

preservation.

In spite of these limitations, the paper presents important insights of how consid-

ering biodiversity indices influences the optimal solution of multiple-species optimal

control models. It can be seen as a starting point for further research building richer

models and addressing the mentioned limitations.

24



References

Armsworth, P.R., Kendall, B.E. and Davis, F.W. (2004). An introduction to biodi-
versity concepts for environmental economists. Resource and Energy Economics,
26: 115-136.

Baumgaertner, S. (2006). Measuring the diversity of what? And for what purpose? A
conceptual comparison of ecological and economic biodiversity indices. University
of Heidelberg, Germany, January 2004.

Berger, W.H. and F.L. Parker (1970). Diversity of planktonic Foraminifera in deep
sea sediments. Science, 168: 1345-1347.

Bulte, E.H. and Horan, R.D. (2003). Habitat conservation, wildlife extraction and
agricultural expansion. Journal of Environmental Economics and Management,
45: 109-127.

Brock, W.A. and Xepapadeas, A. (2003). Valuing Biodiversity from an Economic
Perspective: A Unified Economic, Ecological, and Genetic Approach. American
Economic Review, 93 (5): 1597-1614.

Brock, W.A. and Xepapadeas, A. (2002). Optimal Ecosystem Management when
Species Compete for Limiting Resources. Journal of Environmental Economics
and Management, 44 (2): 189-220.

CBD (1992). Convention on Biological Diversity, United Nations Conference on En-
vironment and Development, Rio de Janeiro, Brazil, 1992.

Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds,
H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie,S.E., Mack, M.C. and Daz, S.
(2000). Consequences of changing biodiversity. Nature, 405: 234-242.

Clark, C.W. (1979). Mathematical Models in the Economics of Renewable Resources.
SIAM Review, 21 (1): 81-99.

Clark, C.W. (1976). Mathematical bioeconomics: the optimal management of re-
newable resources. 2nd ed. John Wiley and Sons, New York, NY, USA.

Clark, C.W. and Munro, G.R. (1975). The Economics of Fishing and Modern Capital
Theory. Journal of Environmental Economics and Management, 2: 92-106.

Duelli, P. and Obrist, M.K. (2003). Biodiversity indicators: the choice of values and
measures. Agriculture, Ecosystems and Environment, 98: 87-98.

Eichner, T. and Tschirhart, J. (2007). Efficient ecosystem services and naturalness in
an ecological/economic model. Environmental and Resource Economics, 37: 733-
755.

25



Eppink, F.V. and van den Bergh, J.C.J.M. (2007). Ecological theories and indica-
tors in economic models of biodiversity loss and conservation: A critical review.
Ecological Economics, 61: 284-239.

Eppink, F.V. and Withagen, C.A. (2009). Spatial patterns of biodiversity conserva-
tion in a multiregional general equilibrium model. Resource and Energy Economics,
31: 75-88.

Flaaten, O. (1991). Bioeconomics of Sustainable Harvest of Competing Species. Jour-
nal of Environmental Economics and Management, 20: 163-180.

Gause, G.F. (1935). La Theorie mathematique de la lutte pour la vie. Hermann,
Paris.

Good, I.J. (1953). The population frequencies of species and the estimation of pop-
ulation parameters. Biometrika, 40: 237-264.

Gordon, H.S. (1954). The Economic Theory of a Common Property Resource: The
Fishery. Journal of Political Economy, 62 (2): 124-142.

Hannesson, R. (1983). Optimal Harvesting of Ecologically Interdependent Fish
Species. Journal of Environmental Economics and Management, 10: 329-345.

Heal, G. (2004). Economics of biodiversity: an introduction. Resource and Energy
Economics, 26: 105-114.

Hill, M.O. (1973). Diversity and Evenness: A Unifying Notation and Its Conse-
quences. Ecology, 54 (2): 427-432.

Horan, R.D. and Bulte, E.H. (2004). Optimal and open Access Harvesting of Multi-
Use Species in a Second-Best World. Environmental and Resource Economics, 28:
251-272.

Li, C.Z., Loefgren, K.G. and Weitzman, M.L. (2001). Harvesting versus Biodiversity:
An Occam’s Razor Version. Environmental and Resource Economics, 18: 355-366.

Li, C.Z. and Loefgren, K.G. (1998). A dynamic model of biodiversity preservation.
Environment and Development Economics, 3: 157-172.

Magurran, A.E. (2004). Measuring Biological Diversity. Blackwell Publishing,
Malden, MA, USA, Oxford, UK, and Victoria, Australia.

McIntosh, R.P. (1967). An index of diversity and the relation of certain concepts to
diversity. Ecology, 48: 392-404.

Perrings, C. and Walker, B. (1997). Biodiversity, resilience and the control of
ecological-economic systems: the case of fire-driven rangelands. Ecological Eco-
nomics, 22: 73-83.

26



Purvis, A. and Hector, A. (2000). Getting the measure of biodiversity. Nature, 405:
212-219.

Renyi A. (1961). On measures of information and entropy. Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 1: 547-561.

Rondeau, C. (2001). Along the Way Back from the Brink. Journal of Environmental
Economics and Management, 42: 156-182.

Shannon, C.E. (1948). A mathematical theory of communication. Bell SystemTech-
nical Journal, 27: 379-423 and 623-656.

Simpson, E.H. (1949). Measurement of diversity. Nature, 163: 688.

Skonhoft, A. (1999). On the Optimal Exploitation of Terrestrial Animal Species.
Environmental and Resource Economics, 13: 45-57.

Swanson, T.M. (1994). The Economics of Extinction Revisited and Revised: A Gen-
eralised Framework for the Analysis of the Problems of Endangered Species and
Biodiversity Losses. Oxford Economic Papers, New Series, Vol. 46, Special Issue
on Environmental Economics, October 1994: 800-821.

Tahvonen, O. and Salo, S. (1996). Nonconvexities in Optimal Pollution Accumula-
tion. Journal of Environmental Economics and Management, 31: 160-177.

Wacker, H. (1999). Optimal harvesting of mutualistic ecological systems. Resource
and Energy Economics, 21: 89-102.

Weitzman, M.L. (1992). On Diversity. The Quarterly Journal of Economics, 107 (2):
363-405.

Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and
the Machine. MIT Press, Cambridge, MA, USA.

27


	Title page_July2010
	Version Juli 2010
	Bibliography_July2010

