

A hybrid approach to the valuation of climate change effects on ecosystem services: evidence from European forests

Paulo A.L.D. Nunes

Department of Economics, Ca'Foscari University of Venice Economics of Ecosystems and Biodiversity Division Fondazione ENI Enrico Mattei

12 September 2010 - 18 September 2010

Belpasso International Summer School: The Economics of Ecosystem Services and Biodiversity Conservation

- 1. Introduction
- 2. Methodological Road Map
- 3. A Hybrid Approach for Valuing the Forest EGS
- 4. Results & conclusions
- 5. The Follow-up of Current Research Work

Objective:

To estimate the welfare losses w.r.t. the changes in forest ecosystem functioning, respective levels of provision of goods and services, caused driven by climate change.

The main questions:

- 1. How to quantify the climate change impacts in terms of a biophysical position of forests ecosystems goods and services?
- 2. how to translate those changes into monetary terms?

Study:

Forest Ecosystems of 34 selected European countries

1. Introduction

- 2. Methodological Road Map
- 3. A Hybrid Approach for Valuing the Forest EGS
- 4. Results
- 5. The Follow-up of Current Research Work

1. Introduction

2. Methodological Road Map

- 3. A Hybrid Approach for Valuing the Forest EGS
- 4. Results
- 5. The Follow-up of Current Research Work

The-state-of-the-art assessment of the economic impacts of climate change

- The economic impacts of climate change is mostly focused on market-related impacts (Tol, 2005);
- Using a monetary metric to express non-market impacts, such as effects on ecosystems or human health is more difficult due to a lack of economic valuation in a climate change context (Pearce et al., 1996; Tol, 2005).

Therefore, there is the need for the development of a more comprehensive valuation framework.

Methodological Road Map

Geographical groupings	Latitude classification	Countries included
Mediterranean Europe	Latitude N35-45°	Greece, Italy, Portugal, Spain, Albania, Bosnia and Herzegovina, Bulgaria, Serbia and Montenegro, Turkey, TFRY Macedonia
Central-Northern Europe	Latitude N45-55°	Austria, Belgium, France, Germany, Ireland, Luxembourg, Netherlands, Switzerland, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia
Northern Europe	Latitude N55-65°	Denmark, United Kingdom, Estonia, Latvia, Lithuania
Scandinavian Europe	Latitude N65-71°	Finland, Iceland, Norway, Sweden

Geographical grouping of 34 European Countries

Note: these 34 European countries are chosen based on the classification reported by the *European Forest Sector Outlook Study* 1960-2000-2020 main report, covering two of the three sub-regions: i.e. Western Europe and Eastern Europe, whereas <u>Russia Federal</u> is excluded from our computation (See UNECE/FAO(2005) for information about the 3 sub-regions).

UNIVERSITÀ CA' FOSCARI V E N E Z I A

A hybrid approach of economic valuation

Table 2 A general classification of Ecosystem Goods and Services for European Forests

Provisioning Services-(1) Wood Forest Products (WFPs)							
Industrial	Wood	Recovered	Sawnwood	Wood-	Paper and	Wood fuel	
Roundwood	pulp	paper	(Million	based	paper board	(Million	
(Million	(Million	(Million	m ³ /yr)	panels	(Million	m ³ /yr)	
m ³ /yr)	t/yr)	t/yr)		(Million	t/yr)	•	
•	•	•		m^3/vr)	•		

N.B.: The WFPs are chosen based on the *European Forest Sector Outlook Study* 1960-2000-2020 main report (UNECE/FAO, 2005)

Understanding of the IPCC Storylines

A1 (Rapid and succe develop • Population (10 ⁶): 376 • High savings and high and innovation at nation level	l essful economic ment) n rate of investments nal & international	A (A differenti • Population (10 ⁶): 4 • Eonomic growth is world • Income per capita:	2 ated world) 19 uneven in the largely increased
 Cumulative CO2 (pp △ Temperature (°C): Precipitation Europe B (Global sustainal 	Note that for the purpose of creating emissions scenarios as a result of this development, the IPCC assumes that no intentional action is taken in response to global warming.		m): 709 2.8 pe(%): 0.5 nal sustainable nent) 8
 Population (10⁶): 376 High investment in resource efficiency Distribution Efficiency: Hgih Cumulative CO2 (ppm): 518 △ Temperature (°C): 3.1 △ Precipitation Europe(%): 4.8 		 Human welfare, equencies Human welfare, equencies Cumulative CO2 (p △ Temperature (°C) △ Precipitation Europerature 	* uality, and ction pm): 567 : 2.1 ppe(%): 2.7

Environmental

1. Introduction

2. Methodological Road Map

3. A Hybrid Approach for Valuing the Forest EGS

- 4. Results
- 5. The Follow-up of Current Research Work

- 1. Biophysical projections based on the two existing models
 - ATEAM model (Advanced Terrestrial Ecosystem Analysis and Modeling)
 - IMAGE 2.2 (Integrated Assessment Model on commodity demands at the European scale)
- 2. Projecting the changes of
 - Land Use (i.e. forest area) and
 - <u>Land Productivity (i.e. WFPs and carbon stocks in the forests)</u>
- 3. Partial equilibrium economic analysis
- 4. Value estimation of the forest EGS in 2050 across different IPCC scenarios

		Forest area				
		1000 na	A1	A2	B1	B2
35-45	Mediterranean Europe					
	Grance	2770	2 730 28	2 811 04	4 481 43	4 285 35
	Italy	9273	7 545 23	7 461 22	10 556 52	4.203,33
	Portugal	2577	2 609 /6	2 61/ 85	3 913 03	3 9/7 91
	Spein	12670	14 076 24	11 704 69	17 124 02	47 275 47
	Spain	13679	11.076,34	11.794,66	17.134,92	17.375,47
	Albania	794	680,67	682,67	1.016,15	1.014,77
	Bosnia and Herzegovina	2.185	2.311,77	2.259,10	2.268,75	2.387,19
	Bulgaria	3.625	3.480,21	3.400,92	3.415,45	3.593,75
	Serbia and Montenegro	2.694	2.117,85	2.180,50	3.476,20	3.324,10
	Тигкеу	10.175	8.712,61	8.615,60	12.189,80	12.415,45
	Yugoslav	906	947,72	926,13	930,09	978,64
Sub total		4(.((1	42.064	41.821	58.452	59.096
45-55	Central - Northern	5005	2.040.00	2 050 00	2.070.20	4 070 70
	Austria	5065	3.949,89	3.859,90	3.876,38	4.078,75
	Beigium	557	639,44	663,01	646,13	1.023,82
	Gormany	10024	9,839,06	9 865 01	17.500,10	13,174,57
	Ireland	405	480.98	412.28	694.68	71/ 15
	Luxombourg	403	90,30	79.92	103.95	04.40
	Nethodanda	199	276.81	770,02	609.20	756 52
	Switzerland	19/6	1 178 32	1 135 74	1 254 38	1 259 18
	Croatia	2135	2 001 /2	2 397 54	2 796 87	3.056.57
	Czech Republic	2648	2 487 58	2 979 93	3 476 26	3 799 05
	Hungary	1976	1 703 47	2 040 63	2 380 51	2 601 55
	Poland	9192	8 400 08	10 062 64	11,738,66	12 828 64
	Romania	6370	6.026.00	7.218.68	8.421.01	9.202.94
	Slovakia	1929	2.010.51	1.964,70	1.973,10	2.076.10
	Slovenia	1264	1.123,67	1.346,07	1.570,27	1.716.07
Sub total		61.354	53.398	58.836	69.734	76.122
55-65	Northern					
	Denmark	355	436,49	849,01	544,31	1.052,10
	United Kingdom	2224	2.770,05	2.518,69	3.264,53	4.081,37
	Estonia	2284	2.208,21	3.106,64	2.675,07	4.247,51
	Latvia	2941	2.833,00	3.985,64	3.431,95	5.449,30
	Lithuania	2099	1.985,65	2.793,54	2.405,46	3.819,42
Sub total		9.903	10.233	13.254	12.321	18.650
65-71	Scandinavian					
	Finland	16521	24.481,37	24.179,38	22.187,86	22.942,82
	Norway	5186	11.403,39	11.049,31	9.049,11	10.141,35
0.1	Sweden	21521	28.871,79	28.228,97	32.916,06	28.872,84
Sub total		43.228	64.757	63.458	64.153	61.957
	Europe	162.256	170.453	177.368	204.661	215.825

Forest area 2005-2050

Advanced Terrestrial Ecosystem Analysis and Modelling - ATEAM model

IMAGE 2.2 Integrated Assessment Model on commodity demands at the European scale (IMAGE team, 2001)

	Wood-based panels (M m3/yr)2005	A1 2050 Wood-based panels (M m3/yr)			
Greece	0,87	0,32	2 0,33	0,52	0,50
Italy	5,61	2,82	2,79	3,63	4,01
Portugal	1,31	1,03	1,08	1,33	1,34
Spain	4,84	3,26	3,24	4,23	4,76
Albania	0,04	0,02	0,04	0,04	0,04
Bosnia and Herzegovina	0,00	0,00	0,00	0,00	0,00
Bulgaria	0,35	0,22	0,35	0,35	0,39
Serbia and Montenegro	0,07	0,05	0,08	0,07	0,08
Turkey	4,77	3,16	5,16	5,12	5,75
Yugoslav	0,00	0,00	0,00	0,00	0,00
	17,86	10,87	13,06	15,29	16,88
Austria	3,45	5,81	5,60	4,01	5,33
Belgium	2,80	2,32	2,40	2,53	3,10
France	6,40	4,99	5,36	5,77	6,31
Germany	16,98	13,28	13,25	13,15	15,54
Ireland	0,88	0,48	0,40	0,48	0,61
Luxembourg	0,45	0,42	0,41	0,53	0,49
Netherlands	0,01	0,00	0,02	0,01	0,01
Switzerland	0,97	1,72	2 1,65	1,70	1,50
Croatia	0,13	0,10	0,17	0,10	0,16
Czech Republic	1,49	1,20	1,95	1,20	1,81
Hungary	0,67	0,53	0,85	0,53	0,79
Poland	6,74	5,37	8,73	5,38	8,07
Romania	1,01	0,82	1,33	0,82	1,23
Slovakia	0,61	0,49	0,79	0,49	0,73
Slovenia	0,41	0,33	0,53	0,33	0,49
	42,99	37,52	42,91	36,71	45,67
Denmark	0,35	0,31	0,63	0,24	0,42
United Kingdom	3,40	2,74	3,18	2,76	3,65
Estonia	0,41	0,30	0,57	0,33	0,49
Latvia	0,43	0,32	2 0,59	0,41	0,43
Lithuania	0,40	0,29	0,54	0,38	0,40
	4,98	3,96	5,50	4,12	5,39
Finland	1,99	1,95	1,88	1,59	1,74
Norway	0,58	0,36	0,29	0,26	0,30
Sweden	0,75	0,78	0,76	0,77	0,71
	3,31	3,09	2,92	2,62	2,75
Total Europe	69,14	55,44	64,38	58,73	70,70

Provisioning Services – Wood-based panels

Global Forest Resources Assessment 2005: Progress towards sustainable forest management, FAO Forestry Paper no.147

ATEAM (A1, A2, B1, B2)

percentage change

Harvested timber is taken as an indicator for wood supply. The wood supply (the amount of stem wood removed from the forest) is related to forest production.

Stocked carbon

Stockedcarbon_{*i*,*j*} =
$$\sum (|ha_{i,j}|_k \times C(t/ha)_{i,j}|_k)$$

Where:

i= country fj= IPCC scenarios

from ATEAM project and IMAGE 2.2 model (A1, A2, B1, B2) from ATEAM project (A1, A2, B1, B2)

Carbon storage in tree biomass and forest soils

K= forest area

- WFPs:
 - Productivity value of Forests in 2005 in country (*n*) is computed based on the market value of harvested forest products (*i*) and the extension of forest area (US\$ per T/M3 per country)

$$ProductivityValue_{geo-climatic region}^{provisioning service} = \sum_{n=1}^{N} \sum_{i=1}^{7} ExportValue_{in} / \sum_{n=1}^{N} ForestArea_{n}$$

(Source of data: FAOSTAT)

 Future value of this sector is projected based on the assumption that the price of WFPs will keep stable for the next 50 years (Clark, 2001)

Specified Valuation approaches (Cont.)

• CO₂ regulation:

Specified Valuation approaches (Cont.)

CO₂ regulation, how to estimate

Source: EcoSense

• Definition:

UNIVERSITÀ

CA' FOSCARI

The damage cost of CO_2 emissions, and other GHG in terms of CO_2 equivalent, refers to the Social Cost of Carbon (SCC), which is an economic measurement of the damage caused by CO2 emissions, compared to a baseline context in which those emissions do not increase, or increase at a slower rate.

- CASES project Cost Assessment for Sustainable Energy Systems
- Objectives of the project:
 - To provide a comprehensive and dynamic assessment of the full costs of electricity generation
- To combine the dynamics of global economic growth with the dynamics of geophysical climate dynamics
 - To estimate the cost of GHG emission under different energy evolution paths in 2020 and 2050
- CASES adopted the value of social costs of carbon estimated by DEFRA (2005) for it is reflexive to the policy context in which the values are used.
- Moreover, the SCC estimates in CASES project are built on various available estimates produced by Integrated Assessment Models in recent years.

The range of value estimates for carbon

Estimated	2000	2030
Lower estimates	€4/tCO ₂	€8/tCO ₂
Central estimates	€23/tCO ₂	€41/tCO ₂
Upper estimates	€53/tCO ₂	€110/tCO ₂

Reference: CASES

Specified Valuation approaches (Cont.)

- Cultural Value
 - Selecting the CV studies for each Geo-Climatic Region
 - Worldwide Meta-analysis (Ojea *et al.*2008) and Regional Value Transfer
 - WTPs from the selected CV studies are corrected by forest area, PPP-GDP per capita, population under four IPCC scenarios

Selected studies on recreational use for geographical value-transfer

Country	Reference study	Forest biome	Geo-climatic region
United Kingdom	Scarpa, R., S. M. Chilton, W. G. Hutchinson, J. Buongiorno (2000)	Temperate broadleaf and mixed forests	Northern Europe
The Netherlands	Scarpa, R., S. M. Chilton, W. G. Hutchinson, J. Buongiorno (2000)	Temperate broadleaf and mixed forests	Central- Northern Europe
Finland	Bostedt, G. and L. Mattsson (2005)	Boreal	Scandinavian Europe
Italy	Bellu, L. G. and Cistulli V. (1994)	Mediterranean and Temperate Broadleaf	Mediterranean Europe

. Selected studies on passive use for geographical value-transfer

Country	Referencestudy	Forest biome	Geo-climatic region
United Kingdom	Garrod, G.D. and Willis, K. G. (1997) Hanley, N., Willis, K, Powe, N, Anderson, M. (2002) ERM Report to UK Forestry Commission (1996)	Temperate	Northern and central- northern Europe
Finland	Kniivila, M., Ovaskainen, V. and Saastamoinen, O. (2002) Siikamaki, Juha (2007)	Boreal	Scandinavian Europe
Spain	Mogas, J., Riera, P. and Bennett, J. (2006)	Mediterranean	Mediterranean Europe

$$V_i = f(S_i, I_i)$$

UNIVERSITÀ

CA' FOSCARI V E N E Z I A

- V_i = the marginal value for recreation or passive use in country i measured as WTP/hectare/year
- S_i = size of the forest area designated to recreation or conservation in country i [hectares]
- I_i = income level in country *i* [PPPGDP]

$\log V_i = \alpha + \beta \log S_i + \gamma \log I_i$

- β = marginal effect of the forest size designated to recreation or conservation
- y = marginal effect of the income level of the country where the site is
 located

Value transfer

$$V_{EU,l} = V_{i,l} \left(\frac{S_{i,l}}{S_{EU,l}} \right)^{\beta}$$

Scaling up recreational and passive use values, at the different geo-climatic regions

From original case studies i

$$\begin{array}{ll} \textbf{Intertemporal}\\ \textbf{IPCC transfer} \end{array} \quad V_{i,T_1} = V_{i,T_0} \left(\frac{H_{i,T_1}}{H_{i,T_0}} \right) \left(\frac{S_{i,T_0}}{S_{i,T_1}} \right)^{\beta} \left(\frac{PPPGDP_{i,T_1}}{PPPGDP_{i,T_0}} \right)^{\gamma} \end{array}$$

- 1. Introduction
- 2. Methodological Road Map
- 3. A Hybrid Approach for Valuing the Forest EGS
- 4. Results and Conclusions
- 5. The Follow-up of Current Research Work

Total Value of WPs Provided by Forests in Different European Regions by 2050

- In our analysis, IPCC A2 storyline has been selected as benchmark as it shows a very differentiated world compared to other storylines: e.g. highest pop, fast per capita economic growth, high CO2 concentration, etc.
- By comparing all other three IPCC storylines, i.e. A1, B1 and B2 with the A2 storyline, we are able to measure the costs of changing in global climate for future scenarios.
- Our computation results show that climate change is complex and the answer about the nature and magnitude of its impacts is multifaceted.

Nevertheless...,

we still can get some interesting insights from our results....

Reporting the valuation results - WFPs

		Mediterranean Europe	Central Europe	Northern Europe	Scandinavian Europe	
Benchmark A2	Scenario	(N35-45)	(N45-55)	(N55-65)	(N65-71)	Europe
Absolute value	A1vs.A2	-40	-6,306	-1,802	1,597	-6,551
difference Million\$, 2005)	B1vs.A2	1,565	-6,115	-2,503	-2,171	-9,223
	B2vs.A2	2,283	1,186	-405	-1,999	1,065
	A1vs.A2	-0.6%	-13.3%	-25.0%	4.7%	-6.9%
Percentage	B1vs.A2	24.3%	-12.9%	-34.7%	-6.4%	-9.7%
change	B2vs.A2	35.4%	2.5%	-5.6%	-5.9%	1.1%

- A1 scenario with highest concentration of CO₂ and higher ^oC will result in welfare loss to the whole Europe on average, except Scandinavian counties.
- 2. In B type scenarios, more sustainable and environmental sound policies may reduce the extraction of WFPs, which thus relates to a decrease in market values, like shown in B1 scenario.
- 3. However, one should realize that a local or national oriented sustainable development strategy (i.e. B2 scenario) may be more effective, in terms of improving the regional social welfare related to the production of WFPs.

Reporting the valuation results – Stocked Carbon

Benchmark A2 Sce	enario	Mediterranean Europe (N35-45)	Central Europe (N45-55)	Northern Europe (N55-65)	Scandinavian Europe (N65-71)	Europe
Absolute value	A1vs.A2	-8,614	-42,212	-5,874	212	-56,489
difference	B1vs.A2	20,785	31,303	5,317	13,705	71,109
(Million\$, 2005)	B2vs.A2	17,819	30,888	6,183	3,128	58,018
	A1vs.A2	-18.8%	-26.5%	-33.8%	0.6%	-22.1%
Percentage Change	B1vs.A2	45.4%	19.6%	30.6%	42.0%	27.9%
	B2vs.A2	38.9%	19.4%	35.6%	9.6%	22.7%

UNIVERSITÀ

A' FOSCARI

- 1. Not surprisingly we can observe a loss in the benefits of carbon storks from forests in Europe in A1 scenario, due to its rapid progress of economic development, thus less concern about forest protection.
- 2. On the contrary, B type scenarios show on average welfare gains in most of the regions, due to the extension of protective forest area under more sustainable sound policies.
- 3. Another interesting finding is, that global cooperation on environmental protection (represented by B1 scenario) can lead to an overall welfare gain, compared to the regional environmental protection (represented by B2 scenario).

		Mediterranean	Central Europe	Northern Europe	Scandinavian	
Benchmark A2 Scenario		Europe (N35-45)	(N45-55)	(N55-65)	Europe (N65-71)	Europe
Absolute value	A1vs.A2	-862	-352	-121	18	-1,317
difference	B1vs.A2	4,156	1,795	393	1,808	8,152
(Million\$, 2005)	B2vs.A2	3,607	633	182	1,038	5,460
	A1vs.A2	-17.8%	-14.2%	-28.3%	1.5%	-14.7%
	B1vs.A2	85.7%	72.5%	92.3%	152.5%	91.2%
Change in %	B2vs.A2	74.4%	25.6%	42.9%	87.5%	61.1%

- 1. A1 scenario is worse off comparing to A2 scenarios, indicating that rapid world economic growth, leads to negative impacts on cultural values of forest ecosystem, which contains local specific cultural heritage, such as the existence of rare and endangered species in the forests.
- 2. All B-type scenarios have positive impacts on welfare economy in terms of provisioning of cultural services, therefore moving from B-type scenarios A2 scenario will involve welfare costs.

- The different IPCC storylines (climate, social and land use embedded implications) is reflected in the overall level of provision of provisioning, regulating and cultural services by the European forests
- The impacts do also reflect important redistributional welfare effects (who wins and who loses)
- The magnitudes signal the potential for adaptation, and/or mitigation measures, however further analysis is needed so as to evaluate the net welfare impacts.

- 1. Introduction
- 2. Methodological Road Map
- 3. A Hybrid Approach for Valuing the Forest EGS
- 4. Results
- 5. The Follow-up of Current Research Work

The experimental exercise with ICES model (work in progress):

 Estimating the marginal effects of policy action for CC management through the change in biodiversity:

Thank you for your attention!

Contact information:

Paulo A.L.D. Nunes

Email: paulo.nunes@feem.it

Acknowledgement:

The research is financed by the European Investment Bank.